We perform a comparison of the different future neutrino oscillation
experiments based on the achievable precision in the determination of the
fundamental parameters theta_{13} and the CP phase, delta, assuming that
theta_{13} is in the range indicated by the recent Daya Bay measurement. We
study the non-trivial dependence of the error on delta on its true value. When
matter effects are small, the largest error is found at the points where CP
violation is maximal, and the smallest at the CP conserving points. The
situation is different when matter effects are sizable. As a result of this
effect, the comparison of the physics reach of different experiments on the
basis of the CP discovery potential, as usually done, can be misleading. We
have compared various proposed super-beam, beta-beam and neutrino factory
setups on the basis of the relative precision of theta_{13} and the error on
delta. Neutrino factories, both high-energy or low-energy, outperform
alternative beam technologies. An ultimate precision on theta_{13} below 3% and
an error on delta of < 7^{\circ} at 1 sigma (1 d.o.f.) can be obtained at a
neutrino factory.Comment: Minor changes, matches version accepted in JHEP. 30 pages, 9 figure