660 research outputs found

    First Principle Local Density Approximation Description of the Electronic Properties of Ferroelectric Sodium Nitrite

    Get PDF
    The electronic structure of the ferroelectric crystal, NaNO2_2, is studied by means of first-principles, local density calculations. Our ab-initio, non-relativistic calculations employed a local density functional approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). Following the Bagayoko, Zhao, Williams, method, as enhanced by Ekuma, and Franklin (BZW-EF), we solved self-consistently both the Kohn-Sham equation and the equation giving the ground state charge density in terms of the wave functions of the occupied states. We found an indirect band gap of 2.83 eV, from W to R. Our calculated direct gaps are 2.90, 2.98, 3.02, 3.22, and 3.51 eV at R, W, X, {\Gamma}, and T, respectively. The band structure and density of states show high localization, typical of a molecular solid. The partial density of states shows that the valence bands are formed only by complex anionic states. These results are in excellent agreement with experiment. So are the calculated densities of states. Our calculated electron effective masses of 1.18, 0.63, and 0.73 mo in the {\Gamma}-X, {\Gamma}-R, and {\Gamma}-W directions, respectively, show the highly anisotropic nature of this material.Comment: 13 Pages, 4 Figures, and 2 Table

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Observation of the decay \psip\rar\kstark

    Full text link
    Using 14 million ψ(2S)\psi(2S) events collected with the BESII detector, branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and \calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The results confirm the violation of the "12%" rule for these two decay channels with higher precision. A large isospin violation between the charged and neutral modes is observed.Comment: 5 pages, 3 figure

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Wind modelling of very massive stars up to 300 solar masses

    Full text link
    Some studies have claimed a universal stellar upper-mass limit of 150 Msun. A factor that is often overlooked is that there might be a difference between the current and initial masses of the most massive stars, as a result of mass loss. We present Monte Carlo mass-loss predictions for very massive stars in the range 40-300 Msun, with large luminosities and Eddington factors Gamma. Using our new dynamical approach, we find an upturn in the mass-loss vs. Gamma dependence, at the point where the winds become optically thick. This coincides with the location where wind efficiency numbers surpass the single-scattering limit of Eta = 1, reaching values up to Eta = 2.5. Our modelling suggests a transition from common O-type winds to Wolf-Rayet characteristics at the point where the winds become optically thick. This transitional behaviour is also revealed with respect to the wind acceleration parameter beta, which starts at values below 1 for the optically thin O-stars, and naturally reaches values as high as 1.5-2 for the optically thick Wolf-Rayet models. An additional finding concerns the transition in spectral morphology of the Of and WN characteristic He II line at 4686 Angstrom. When we express our mass-loss predictions as a function of the electron scattering Gamma_e (=L/M) only, we obtain a mass-loss Gamma dependence that is consistent with a previously reported power-law Mdot propto Gamma^5 (Vink 2006) that was based on our semi-empirical modelling approach. When we express Mdot in terms of both Gamma and stellar mass, we find Mdot propto M^0.8 Gamma^4.8 for our high Gamma models. Finally, we confirm that the Gamma-effect on the mass-loss predictions is much stronger than that of an increased helium abundance, calling for a fundamental revision in the way mass loss is incorporated in evolutionary models of the most massive stars.Comment: minor language changes (Astronomy & Astrophysics in press - 11 pages, 10 figures

    Optimal measurements for simultaneous quantum estimation of multiple phases

    Get PDF
    A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this letter we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the maximal theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.Comment: 4 pages + appendix, 2 figure

    Non-identical particle correlations in 130 and 200 AGeV collisions at STAR

    Full text link
    STAR has performed a correlation analyses of pion-kaon and pion-proton pairs for sqrt(s_NN)=130 AGeV and sqrt(s_NN)=200 AGeV and kaon-proton, proton-Lambda and pion-Cascade pairs for AuAu collisions sqrt(s_NN)=200 AGeV. They show that average emission space-time points of pions, kaons and protons are not the same. These asymmetries are interpreted as a consequence of transverse radial expansion of the system; emission time differences explain only part of the asymmetry. Therefore our measurements independently confirm the existence of transverse radial flow. Furthermore, correlations of strange hyperons is investigated by performing proton-Lambda and pion-Cascade analyses, giving estimates of source size at high m_{T}. The strong interaction potential between (anti-)proton and lambda as well as kaon and proton is investigated.Comment: 5 pages, 3 figures, Quark Matter 04 proceedings, submitted to J. Phys. G: Nucl. Phy

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
    corecore