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Abstract 
Measurements of two-particle correlations on transverse momentum pt for√
Au–Au collisions at sNN  = 130 GeV are presented. Significant large
momentum-scale correlations are observed for charged primary hadrons with 
0.15 � pt � 2 GeV/c and pseudorapidity |η| � 1.3. Such correlations 
were not observed in a similar study at lower energy and are not predicted 
by theoretical collision models. Their direct relation to mean-pt fluctuations 
measured in the same angular acceptance is demonstrated. Positive correlations 
are observed for pairs of particles which have large pt values while negative 
correlations occur for pairs in which one particle has large pt and the other has 
much lower pt . The correlation amplitudes per final state particle increase with 

http://stacks.iop.org/JPhysG/34/799
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collision centrality. The observed correlations are consistent with a scenario 
in which the transverse momentum of hadrons associated with initial-stage 
semi-hard parton scattering is dissipated by the medium to lower pt . 

(Some figures in this article are in colour only in the electronic version) 

1. Introduction 

Studying two-particle correlations and event-wise fluctuations can provide essential 
information about the medium produced in ultrarelativistic heavy ion collisions [1–3]. At 
the collision energies available at the Relativistic Heavy Ion Collider (RHIC) energetic parton 
scattering occurs at sufficient rate to enable quantitative studies of in-medium modification 
of parton scattering and the distribution of correlated charged hadrons associated with those 
energetic partons. Modification of those correlation structures is expected as the bulk medium 
produced in ultrarelativistic heavy ion collisions increases in spatial extent and energy density 
with increasing collision centrality. Analyses of the centrality dependence in Au–Au collisions 
of high-pt back-to-back jet angular correlations based on a leading-particle technique (e.g., 
leading-particle pt > 4 GeV/c, associated particle pt < 4 GeV/c) reveal strong suppression 
for central collisions [4, 5], suggesting the development of a medium which dramatically 
dissipates momentum. Complementary studies of the lower-pt bulk medium, its correlation 
structure on transverse momentum, and how those correlations evolve with collision centrality 
provide a measure of the momentum transport from the few GeV/c range to lower pt of order 
a few tenths of a GeV/c where the bulk hadronic production occurs. Such studies are an 
essential part of understanding the nature of the medium produced in heavy ion collisions at 
RHIC. 

In addition to jet angular correlations at high-pt substantial nonstatistical fluctuations 
in event-wise mean transverse momentum (pt ) of charged particles from Au–Au collisions 
were reported by the STAR [6] and PHENIX [7] experiments at RHIC. (pt ) fluctuations at 
RHIC are much larger than those reported at the CERN Super Proton Synchrotron (SPS) 
with one-tenth the CM energy [8], and were not predicted by theoretical models [6, 9–11]. 
(pt ) fluctuations could result from several sources including collective flow (e.g., elliptic 
flow [12] when azimuthal acceptance is incomplete), local temperature fluctuations, quantum 
interference [13], final-state interactions, resonance decays, longitudinal fragmentation [14], 
and initial-state multiple scattering [15] including hard parton scattering [9] with subsequent 
in-medium dissipation [16]. (pt ) fluctuations can be directly related to integrals of two-particle 
correlations over the pt acceptance. Correlations on pt , by providing differential information, 
better reveal the underlying dynamics for the observed nonstatistical fluctuations in (pt ). 

In this paper, we report the first measurements at RHIC of two-particle correlations (based 
on number of pairs) on two-dimensional (2D) transverse momentum space (pt1, pt2) for all 
charged particles with 0.15 pt 2 GeV/c and |η| 1.3 (pseudorapidity) using the √ 

sNN  = 130 GeV Au–Au collisions observed with the STAR detector [17]. This analysis 
is intended to reveal the response of the bulk medium to strong momentum dissipation and 
probe the dynamical origins of (pt ) fluctuations. The data used in this analysis are described 
in section 2 and the analysis method, corrections and errors are discussed in section 3. Models 
and fits to the data are presented in sections 4 and 5, respectively. A discussion and summary 
are presented in sections 6 and 7. 
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2. Data 

Data for this analysis were obtained with the STAR detector [17] using a 0.25 T uniform 
magnetic field parallel to the beam axis. A minimum-bias event sample (123k triggered 
events) required coincidence of two zero-degree calorimeters (ZDC); a 0–15% of total cross 
section event sample (217k triggered events) was defined by a threshold on the Central Trigger 
Barrel (CTB) scintillators, with ZDC coincidence. Event triggering and charged-particle 
measurements with the Time Projection Chamber (TPC) are described in [17]. Approximately 
300k events were selected for use in this analysis. A primary event vertex within 75 cm of 
the axial centre of the TPC was required. Valid TPC tracks fell within the detector acceptance 
used here, defined by 0.15 < pt < 2.0 GeV/c, |η| < 1.3 and 2π in azimuth. Primary tracks 
were defined as having a distance of the closest approach less than 3 cm from the reconstructed 
primary vertex which included a large fraction of true primary hadrons plus approximately 7% 
background contamination [18] from weak decays and interactions with the detector material. 
In addition accepted particle tracks were required to include a minimum of 10 fitted points 
(the TPC contains 45 pad rows in each sector) and, to eliminate split tracks (i.e., one particle 
trajectory reconstructed as two or more tracks), the fraction of space points used in a track fit 
relative to the maximum number expected was required to be >52%. Particle identification 
was not implemented but charge sign was determined. Further details associated with track 
definitions, efficiencies and quality cuts are described in [18, 19]. 

3. Data analysis 

3.1. Analysis method 

Our eventual goal is to determine the complete structure of the six-dimensional two-particle 
correlation for all hadron pair charge combinations. Towards this goal the two-particle 
momentum space was projected onto 2D subspace (pt1, pt2) by integrating the pseudorapidity 
and azimuth coordinates (η1, η2, φ1, φ2) over the detector acceptance for this analysis, 
|η| 1.3 and full 2π azimuth. Projection onto 2D subspace (pt1, pt2) is achieved by 
filling 2D binned histograms of the number of pairs of particles for all values of η, φ within 
the acceptance. Complementary correlation structures on relative pseudorapidity and azimuth 
coordinates with integration over transverse momentum acceptance are reported in [20, 21]. 

The quantities obtained here are ratios of normalized histograms of sibling pairs (particles 
from the same event) to mixed-event pairs (each particle of the pair is from a different, but 
similar event) in an arbitrary 2D bin with indices a, b representing the values of pt1 and 
pt2 (see discussion below). The normalized pair-number ratio r̂ab introduced in [22] is here 
defined by 

r̂ab ≡ n̂ab,sib/n̂ab,mix, (1) /L /L
where n̂ab,sib = nab,sib ab nab,sib (sum over all 2D bins), n̂ab,mix = nab,mix ab nab,mix, and 
nab,sib and nab,mix are the inclusive number of sibling and mixed-event pairs, respectively, in 
2D bin a, b. Histograms and ratios r̂ab were constructed for each charge-sign combination: 
(+, +), (−, −), (+,−) and (−, +). Ratio r̂ab is approximately 1, while difference (r̂ab − 1) 
measures correlation amplitudes and is the quantity reported here. 

The exponential decrease in particle yield with increasing pt degrades the statistical 
accuracy of r̂ab at larger transverse momentum, thus obscuring the statistically significant 
correlation structures there. In order to achieve approximately uniform statistical accuracy 
across the full pt domain considered here, nonuniform bin sizes on pt were used. This was 
done by noting that the charged hadron pt distribution, dN/pt dpt , for Au–Au collisions at 
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√ 
sNN  = 130 GeV is approximately exponential for 0.15 pt 2 GeV/c [18] and by dividing 

the running integral of that exponential distribution into equal bin sizes. This procedure 
provides a convenient mapping from pt to function X(pt ) ≡ 1 − exp{−(mt − m0)/0.4 GeV}√ 

2 2where 0 X 1,mt = p + m0, and m0 (here assumed to be the pion mass mπ )t 
is a mapping parameter from coordinate pt to X. 51 Equal bin sizes in X therefore have 
approximately the same number of sibling pairs. For this analysis 25 equal width bins on X 
from X(pt = 0.15 GeV/c) = 0.15 to X(pt = 2.0 GeV/c) = 0.99 were used52 . 

Normalized pair-number ratios were formed from subsets of events with similar centrality 
(multiplicities differ by 100, except 50 for the most-central event class) and primary-
vertex location (within 7.5 cm along the beam axis) and combined as weighted (by sibling pair 
number) averages within each centrality class. The normalized pair-number ratios for each 
charge-sign were combined to form like-sign (LS: ++,−−) and unlike-sign (US: +−,−+) 
quantities. The final correlations reported here were averaged over all four charge-sign 
quantities, resulting in the correlation structures common to all charge-sign combinations. 
Hence we refer to these final results as charge-independent (CI = LS + US) correlations 
even though they are constructed from quantities which depend on the charge signs of the 
hadron pairs. The correlation measure reported here is therefore the CI combination for 
r̂[X(pt1), X(pt2)] − 1. 

Deviations of event-wise (pt ) fluctuations from a central-limit theorem [24, 25] are  
measured by the scale-dependent (i.e., η, φ bin sizes) variance difference 1σ 2 introduced pt :n 

in [6], where it was evaluated at the STAR (η, φ) detector acceptance scale. 1σ 2 can pt :n 
be expressed as a weighted integral on (pt1, pt2) of the pair-density difference ρsib − ρmix, 
where two-particle densities ρsib and ρmix are approximated by the event-averaged number of 
sibling and mixed-event pairs per 2D bin, respectively. Both densities are normalized to the 
event-averaged total number of pairs. 1σ 2 can be rewritten exactly as a discrete sum over pt :n 
pt products [24] (first line in equation (2) below), and the summations approximated in turn 
by the weighted integral of the pair-density difference (second line in equation (2)) according 
to 

E Nj  1 1 ( }
21σ 2 ≡ ptj i ptj i 1 − p̂pt :n t¯ N E =i 1=1j=1 i    

1 ≈ dpt1 dpt2pt1pt2 (ρsib − ρmix)¯ N
2 ¯≡ p̂ N(r(pt1, pt2) − 1), (2)t 

where the weighted average (r(pt1, pt2) − 1) is defined in the last line with weight ff 
N̄ 2 ˆ 2 53 pt1pt2ρmix(pt1, pt2) and the integral of ρmix, dpt1dpt2pt1pt2ρmix, is  p . Int 

equation (2) Nj is the event-wise number of accepted particles, N is the mean of Nj in¯ 

the centrality bin, E is the number of events, j is the event index, p̂t is the mean of 
the ensemble-average pt distribution (all accepted particles from all events in a centrality 
bin), and i, i 1 are particle indices. Equation (2) relates nonstatistical (pt ) fluctuations at the 
acceptance scale to the weighted integral of ρsib − ρmix, the latter difference being related to 

51 Function X(pt ) permits a fully analytic description of the data in [X(pt1), X(pt2)] space using the fitting model 
in (pt1, pt2) space described in section 4. Choice m0 = mπ ≈ T emphasizes the soft part of the mt spectrum in 
mapping from pt to X(pt ) where a temperature model is more appropriate. 
52 Other mappings are possible. For example, in analysis of transverse jets, transverse rapidity yt (pt ) ≡ 
ln{(mt + pt )/m0} is optimal for comparing longitudinal and transverse fragment distributions. 
53 The weighted integral of ρmix corresponds to N times the second term in the first line of equation (2). The event ¯ 

ensemble average number of mixed-event pairs for that term is N(N  − 1) = N̄ 2 − N ¯ + σ 2 , where  σ 2 is the variance N N 
of the multiplicity distribution, assumed to be Poisson, such that σ 2 = N . ¯ 

N 
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the two-particle number correlation density. In the present analysis we measure normalized 
pair-ratio distributions r̂[X(pt1), X(pt2)] exhibiting two-particle number correlations on pt 

which correspond to excess (pt ) fluctuations. 

3.2. Corrections and centrality 

Corrections were applied to ratio r̂ for two-particle reconstruction inefficiencies due to 
overlapping space points in the TPC (two trajectories merged into one reconstructed track) 
and intersecting trajectories which cross paths within the TPC and are reconstructed as more 
than two tracks. These corrections were implemented using two-track proximity cuts54 at 
various radial positions in the TPC in both the longitudinal (drift) and transverse directions 
(approximately along the pad rows). The track pair cuts were applied to both ρsib and ρmix 

as in HBT analyses [13]. Small-momentum-scale correlation structures due to quantum 
interference, Coulomb and strong final-state interactions [13] were suppressed by eliminating 
sibling and mixed-event track pairs (∼3% of total pairs) with |η1 − η2| < 0.3, |φ1 − φ2| < π/6 
(azimuth), |pt1 − pt2| < 0.15 GeV/c, if  pt < 0.8 GeV/c for either particle. The small
momentum-scale correlation (SSC) structures are most prominent in the lower-pt domain of 
the 2D (pt1, pt2) space along the pt1 = pt2 diagonal and were shown to be similar in amplitude 
and location to simulations [26] which account for quantum interference correlations and 
Coulomb final-state interaction effects using pair weights determined by HBT analyses for 
these data [13]. The preceding cuts were optimized [19] to eliminate the SSC structure without 
affecting the large-momentum-scale correlation (LSC) structure which is of primary interest 
here. The track-pair cuts generally have small effects on the LSC; uncertainties which result 
from application of these cuts are discussed in section 3.3 and are negligible compared to the 
large momentum scale structures studied here. 

Four centrality classes labelled (a)–(d) for central to peripheral were defined by cuts 
on TPC track multiplicity N within the acceptance by (d) 0.03 < N/N0 0.21, (c) 
0.21 < N/N0 0.56, (b) 0.56 < N/N0 0.79 and (a) N/N0 > 0.79, corresponding 
respectively to the approximate fraction of total cross section ranges 40–70%, 17–40%, 5– 
17% and 0–5%. N0 is the end-point55 of the minimum-bias multiplicity distribution. 

The centrality dependence of quantity r̂−1 is shown in figure 1 as perspective views for the 
four centrality classes used here. This correlation measure represents the number of correlated 
particle pairs per final-state pair in each 2D bin, and therefore contains a dilution factor 1/N ¯ 

relative to the LSC measure presented in [21], ¯ r−1) whose amplitudes are of order one. The N(ˆ
structures in figure 1 are therefore numerically a few permil for central Au–Au collisions but 
are highly significant statistically as seen by comparing to the statistical errors. The dominant 
features in figure 1 are (1) a large-momentum-scale correlation ‘saddle’ structure with positive 
curvature along the X(pt)h ≡ X(pt1) + X(pt2) sum direction from [X(pt1), X(pt2)] (0, 0) to 
(1, 1) and a corresponding negative curvature along the X(pt )1 ≡ X(pt1)−X(pt2) difference 
direction from [X(pt1), X(pt2)] (0, 1) to (1, 0), and (2) a narrow peak structure at large X(pt) 
(pt > 0.6 GeV/c). With increasing centrality the negative curvature of the LSC saddle shape 
along the difference variable increases in magnitude, the positive curvature along the sum 
variable decreases, and the magnitude of the peak at large X(pt) also decreases. Without 
the SSC cuts a relatively small peaked structure with amplitude of order 0.004 (peripheral) to 

54 Two-track merging cuts required the average separation distance �10 cm based on two-track separations at nine 
radial positions in the TPC. Two tracks which cross within the TPC with separations less than 10 cm (z) and 30 cm  
(azimuth) at mid-radius from the TPC axis were also excluded. 
55 N0, the half-maximum point at the end of the minimum-bias distribution plotted as dσ/dN1/4, is an estimator on 
N for the maximum number of participants; Npart/Npart,max � N/N0 within 4%. 
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Figure 1. Symmetrized pair-density net ratios r̂[X(pt1), X(pt2)] − 1 for all nonidentified charged 
primary particles for (a) most-central, (b) mid-central, (c) mid-peripheral, and (d) peripheral Au– √
Au collision events at sNN  = 130 GeV/c. Note the scale change for panels (c) and (d) and 
auxiliary pt scale in units GeV/c in panel (a). SSC were removed using track pair cuts (see text). 
Errors are discussed in section 3.3. 

0.0005 (central) is present for X(pt ) <  0.3 (pt < 0.25 GeV/c) which weakens in amplitude 
but visibly persists to X(pt) <  0.6 (pt < 0.5 GeV/c). 

An upper limit estimate for resonance contributions was obtained using Monte Carlo 
simulations [26] assuming 70% of the primary charged particle production is from resonance 
decays. The correlations were simulated by populating the events with a sufficient number of 
ρ0, ω  two-body decays to account for 70% of the observed multiplicity. These two-body decay 
processes produced a small saddle-shape correlation with curvature opposite to the data and 
amplitude at the corners approximately 0.0002 for the most-central data, increasing as 1/N ¯ 

for the remaining centrality bins. The saddle-shape structures in figure 1 cannot be explained 
with resonance decays. 

The same analysis applied to Pb–Pb collisions in 1.1 < ycm < 2.6 at the CERN SPS did 
not reveal any statistically significant CI correlations [27] when SSC (see section 3.2) were  
removed with pair cuts. The analysis in [28] of proton + proton and various nucleus + nucleus 
collision data from the CERN SPS for 1.1 < ycm < 2.6 without those pair cuts revealed SSC 
peaks at low X(pt ) along the X(pt)h direction. 

3.3. Error analysis 

Per-bin statistical errors for r̂ − 1 in figure 1 range from ∼6–9% of the maximum correlation 
amplitude for each centrality (typically 0.000 15, 0.000 11, 0.000 35 and 0.001 for centralities 
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(a)–(d) respectively) and are approximately uniform, by design, over the 2D domain on X(pt). 
Statistical errors for N(r̂ − 1) (∼0.1 − 0.15) are less dependent on centrality. ¯ 

Systematic errors were estimated as in [6, 21] and are dominated by the 7% non-primary 
background contamination [18] whose correlation with primary particles is unknown. The 
upper limit on the systematic error from this source was estimated by assuming that the number 
of correlated pairs associated with background-primary pairs of particles could range from 
zero up to the amount which would occur among 7% of the primary particles and the remaining 
primaries. This conservative assumption produces an overall ±7% uncertainty relative to the 
correlation amplitudes in figure 1 throughout the domain for X(pt1,2) >  0.4. This error 
increases to ±16% at lower X(pt) where the contamination fraction is larger and is about 
±12% in the off-diagonal corners of the [X(pt1), X(pt2)] domain. Multiplicative factors for 
quantity r̂ − 1 which correct for the non-primary background contamination range from 1.0, 
assuming that background-primary particle pairs are correlated and increase both n̂ab,sib and 
n̂ab,mix by 2 ×7% = 14%, to 1.14 if background-primary particle pairs are uncorrelated but the 
non-primary background contributes 14% to n̂ab,mix. Multiplication of the data in figure 1 by 
average factor 1.07 provides an estimate of the background corrected correlation amplitudes. 

Additional sources of systematic error were evaluated. Uncertainty in the two-track 
inefficiency corrections have modest effects along the X(pt1) = X(pt2) diagonal (<2%) and 
are negligible elsewhere. Tracking anomalies caused when particle trajectories intersect 
the TPC high-voltage central membrane significantly affect the X(pt1,2) <  0.2 domain 
corresponding to the single bin at lowest X(pt), and the diagonal bins for X(pt1,2) <  0.4 by  
20%. Final multiplicative correction estimates (not applied in figure 1) and total systematic 
errors for r̂ − 1 varied respectively from 1.07 and ± 7% for X(pt1,2) >  0.4 up to 1.16 and  
±16–20% for X(pt1,2) <  0.4 and 1.12 and ± 12% in the off-diagonal corners (i.e., near (0, 1) 
and (1, 0)). 

Other potential sources of systematic error were studied and determined to have negligible 
effects including primary vertex position uncertainty perpendicular to the beam direction, 
variation of tracking acceptance and efficiency with primary vertex location along the axis 
of the TPC, TPC drift speed and/or timing-offset fluctuation, sporadic outages of TPC read
out electronic components, angular resolution, multiplicity and primary vertex position bin 
sizes used for producing mixed events, and charge sign dependence of the tracking efficiency. 
Conversion electron contamination is suppressed by the lower pt acceptance cut and also by 
the pair cuts described in section 3.2 and also makes negligible contribution to the systematic 
error. 

4. Modelling one- and two-particle distributions on pt 

Two features dominate the data in figure 1: (1) a large-momentum scale saddle shape and (2) 
a peak at large X(pt1) and X(pt2). In this section, results from Monte Carlo collision models 
are analysed in order to gain insight into the dynamical origin(s) of these two correlation 
structures in the data. Based on this study an analytical function is obtained which accurately 
describes the saddle shape and in section 5 this function is used to fit the 2D correlation data. 

The high-energy nuclear collision model Hijing [9], which includes longitudinal colour
string fragmentation and perturbative quantum chromodynamics (pQCD) based jet production 
and jet quenching, exhibits a significant correlation structure at higher pt [X(pt1) + X(pt2) >  
1.6] as shown in the left-hand panel of figure 2 for central Au–Au collisions. The predictions, 
which include jet production with jet quenching (default parameters) are qualitatively different 
from the data in figure 1, failing to produce any saddle-shape, but suggest the type of correlation 
structure produced by jets. The general structure of the Hijing predictions suggests that the 
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Figure 2. Symmetrized pair-density ratio r̂[X(pt1), X(pt2)] − 1 for unidentified charged particles 
and for central Au–Au collisions. Left panel: default Hijing [9] with jet quenching, Right panel: 
a Monte Carlo model [26] which simulates event-wise global temperature fluctuations (see text). 

peaks in the data at higher X(pt) are at least partly due to initial-state partonic scattering 
and fragmentation. Other theoretical models which combine initial-state parton scattering, 
energy loss, dissipation, rescattering and recombination [11, 29] may eventually explain these 
correlation data, but relevant predictions are not available at this time. 

The saddle-shape correlation spans the entire momentum scale studied here, suggesting 
event-wise fluctuations of global event characteristics (e.g. temperature and/or collective 
velocity of the bulk medium) as a possible source. If heavy ion collisions at RHIC thermalize 
then an ensemble of collision events would be characterized by a distribution of event-wise 
equilibrium temperatures reflecting event-to-event fluctuations in the initial conditions and 
time evolution of each colliding system. Based on this idea the transverse momentum 
correlations for an ensemble of such events can be predicted using a Monte Carlo model 
in which charged particle production is generated by sampling the inclusive single-particle 
(pt , η, φ)  distribution obtained from the data. At mid-rapidity the inclusive distribution on 
pt for 0.15 � pt � 2 GeV/c is well approximated by exp(−mt/T ) ≡ exp(−βmt) [18] 
where T is an effective temperature [30] or inverse slope parameter and β = 1/T . Events 
were generated by sampling exp(−mt/T ) where T fluctuates randomly from event-to-event 
according to a Gaussian distribution about mean value T0 = 1/β0; T0 was determined by the 
measured pt spectrum. 

The result of this Monte Carlo model for central Au–Au collisions at 130 GeV is shown 
in the right-hand panel of figure 2 where the mean and standard deviation (Gaussian sigma) of 
the event-wise temperature distribution are T0 = 200 MeV and σT /T0 = 1.5%. The predicted 
correlations are not sensitive to T0 but the overall correlation amplitude is directly sensitive to 
σT /T0 which was adjusted to approximate the overall amplitude of the data in figure 1(a). The 
global temperature fluctuation model accurately describes the saddle-shape. An analytical 
function based on this approach is derived in the remainder of this section and is used in the 
following section (section 5) to fit the data. 

We seek an analytical representation of the LSC saddle-shape structure of the data in 
figure 1 that is both mathematically compact and physically motivated in order to conveniently 
characterize the centrality dependence and to infer thermodynamic properties of the medium. 
The above Monte Carlo results indicate that a successful representation should involve an 
averaging over the inverse slope parameter. In general the inverse temperature β can vary 
from event-to-event as well as internally within each event, reflecting the possibility of relative 
‘hot spots’ and ‘cold spots’ in the final-state particle distributions. The number, location in 
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source coordinates (e.g., ηz—spacetime rapidity [30] and ϕ—azimuth), amplitude, and angular 
extent of these perturbations in β may vary for each event. In addition, for realistic collision 
systems both thermal and collective motions are involved such that parameter β becomes an 
inverse effective temperature [30] where fluctuations in β could result from fluctuations in the 
local temperature of the flowing medium, the collective flow velocity itself, or a combination 
of both effects56 . Event-wise effective temperature is therefore represented by distribution 
T (ηz, ϕ)  on source coordinates ηz and ϕ, and similarly for β(ηz, ϕ). 

The momentum of a particle at ηz, ϕ  in the final stage of the collision system is obtained by 
sampling thermal distribution exp[−mt/T (ηz, ϕ)] = exp[−β(ηz, ϕ)mt ] as illustrated in the 
diagram in figure 3(a). In general the histogram of sampled T (ηz, ϕ)  or β(ηz, ϕ)  values for all 
particles in all events in the event ensemble, g1(β), could be like the generic peaked distribution 
in figure 3(b) with mean β0 and standard deviation σβ . The inclusive mt distribution is then 
obtained by convoluting thermal distribution exp[−β(mt − m0)] with g1(β) given by 

dN ∞ 
−β(mt −m0)= A dβg1(β) e (3) 

mtdmt 0 

where A is a normalization constant. The global temperature fluctuation model is recovered 
when T (ηz, ϕ)  is independent of source coordinate but varies from event-to-event. 

In the Monte Carlo model event-wise T = 1/β was obtained by sampling a Gaussian 
distribution. It is therefore reasonable to represent g1(β) by a peaked distribution which is 
here assumed to be a gamma  distribution [31] in order to obtain an analytic solution of the 
integral in equation (3) given by 

dN = A/[1 + β0(mt − m0)/nfluct]
nfluct , (4) 

mtdmt /
a L  ́evy distribution [32], where 1/nfluct = σ 2 β0 

2 is the relative variance of g1(β). The finite β 
width of g1(β) produces a net increase in the yield at higher mt as illustrated in figure 3(c). 
We emphasize that any finite-width peaked function g1(β) results in an mt distribution which 
decreases less rapidly with increasing mt than thermal spectrum e−β0mt . The assumption 
of a gamma distribution for g1(β) is therefore not essential but is used for mathematical 
convenience and is justified by the capability of the mt distribution in equation (4) to describe 
the inclusive data. We note however that deviations of the measured mt distribution from a 
thermal spectrum, quantified by exponent n in the power-law mt distribution [18], can result 
from transverse expansion [30] in addition to local and event-to-event fluctuations in β(ηz, ϕ)  
assumed in deriving equations (3) and (4). Consequently, fitting the 1/mtdN/dmt spectra 
to obtain the power-law exponent n cannot by itself determine the relative variance of the 
effective temperature distribution, 1/nfluct, which is related to the degree of equilibration. 

Similarly the two-particle distribution on (mt1,mt2) is obtained by convoluting the 
two-particle thermal distribution exp[−β1(mt1 − m0)] exp[−β2(mt2 − m0)] with the 2D 
distribution of pairs of inverse effective temperature parameters (β1, β2), where particles 1 and 
2 sample local thermal distributions determined by β(ηz1, ϕ1) and β(ηz2, ϕ2), respectively (see 
figure 3(a)). The distribution of (β1, β2) for all pairs of particles used in all events in the 
ensemble defines a 2D histogram and 2D distribution, g2(β1, β2), illustrated in figure 3, panels 
(d)–(f) for three hypothetical cases. If the event ensemble distribution on β has finite width 
(σβ > 0), but is point-to-point uncorrelated within each event, then g2(β1, β2) is symmetric on 
β1 versus β2 (zero covariance) as shown in figure 3(d). For uncorrelated β fluctuations or for 
mixed-event pairs, g2 factorizes as g2(β1, β2) = g1(β1)g1(β2), implying zero covariance. On 

56 Analysis of the measurements presented here cannot distinguish between fluctuating temperature or flow velocity 
which would require identified particle mass at higher pt and over the large η, φ acceptance of the STAR TPC. 
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Figure 3. Diagrams illustrating the temperature fluctuation model. Panel (a): source coordinates 
with two final state particles sampling local inverse temperatures β1 = β(ηz1, ϕ1) and β2 = 
β(ηz2, ϕ2). Panel (b): distribution g1(β) of sampled β values for all particles in all events of 
a centrality bin with mean β0 and standard deviation σβ . Panel (c): thermal model inclusive 
charged particle yield dN/mt dmt at mid-rapidity versus mt − m0 with no temperature fluctuations 
(σβ = 0, solid line) and with temperature fluctuations (σβ > 0, dashed line). Panel (d): 2D 
distribution, g2(β1, β2), of sampled pairs β(ηz1, ϕ1) and β(ηz2, ϕ2) when there are no point-to
point temperature correlations within each source but large temperature variations within each 
event (non-equilibrium sources). Panel (e): same as (d) except for global temperature fluctuations 
where each event is equilibrated but the equilibrium temperature fluctuates from event-to-event. 
Panel (f): same as (d) except point-to-point temperature correlations occur within each event as 
evidenced by the positive covariance of distribution g2(β1, β2). 

the other hand, if every event is thermally equilibrated, then each pair of particles from a given 
event samples the same value of β where β1 = β2. For this case (global temperature fluctuation 
model) g2(β1, β2) limits to a diagonal line distribution illustrated in figure 3(e) and given by 

1 g2(β1, β2) ∝ g1(β1)δ(β1 − β2), where δ(β1 − β2) is a Dirac delta-function. In this case g2 has 
maximum covariance and represents the conventional picture of an ensemble of equilibrated 
events with event-wise fluctuations in the global temperature. In general g2(β1, β2) may have 
an intermediate covariance as illustrated in figure 3(f). In this case if g2(β1, β2) is expressed 
as a product of a gamma distribution on the sum direction, βh = β1 + β2 multiplied by a 
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Gaussian on β1 = β1 − β2 (for mathematical convenience), then an analytic expression for 
the two-particle distribution results, given by a 2D L ́evy distribution     2

 −n1 −2nh
β0mth  β0mt1 
  
Fsib ∝ 1 +  1 − (5)

2nh 2n1 + β0mth

on sum and difference variables mth  ≡ mt1 + mt2 − 2m0 and mt1  ≡ mt1 − mt2. Inverse 
exponents 1/nh and 1/n1 are the relative variances of g2(β1, β2) along sum and difference 
variables βh and β1 respectively, and 1(1/n)tot ≡ 1/nh − 1/n1 is the relative covariance 
of g2, 57 measuring velocity/temperature correlations. For the examples in panels (d), (e) and 
(f) of figure 3, 1/nh = 1/n1, 1/nh > 0 and 1/n1 = 0, and 1/nh > 1/n1 > 0, respectively. 
Mixed-event pair distribution Fmix(pt1, pt2), a product of one-dimensional Lévy distributions 
(equation (4)), has the form of equation (5) but with nh = n1 = nfluct. 

Ratio 

rmodel ≡ Fsib/Fmix, (6) 

referred to as a 2D Lévy saddle, predicts a saddle-shape when g2(β1, β2) has nonzero 
covariance and is the analytical quantity to be compared to data. It can be tested by comparison 
to the data in figure 1 via chi-square fits. We emphasize for this 2D case that any peaked 
function g2(β1, β2) with nonzero covariance results in a 2D saddle shape distribution for rmodel. 
The gamma distribution times Gaussian 2D model for g2 was chosen for mathematical 
convenience but it is reasonable given the form of the measured event-wise (pt ) distribution. 
The variance of g2 along the difference direction β1 measures the average degree of 
equilibration of the events in the ensemble. Relative variance differences 1(1/n)h ≡ 
(1/nh − 1/nfluct) and 1(1/n)1 ≡ (1/n1 − 1/nfluct) measure the saddle curvatures of rmodel 

(and hence the data) along sum and difference directions at the origin, and are the quantities 
best determined by these fits. Sensitivity to the magnitudes of the relative variances 1/nh and 
1/n1 is discussed in the next section. 

5. Analytical model fits 

Data in figure 1 (excluding peak region X(pt)h > 1.6) were fitted with rmodel − 1 +  C̃ by 
varying parameters nh, n1 and C̃ (offset). Parameters β0 = 5 GeV−1 and m0 = mπ were 
fixed by the (pion dominated) inclusive single-particle pt spectrum for pt < 1 GeV/c. The  
fits are insensitive to the absolute value of 1/nfluct; its value was fixed as follows. Parameter 
1/n when fitted to the single particle mt spectrum [18], using an analogue of equation (4) 
with nfluct replaced by n, accounts for the deviation between the measured distribution and 
e−βmt . In general, both collective radial expansion velocity [30] and effective temperature 
fluctuations contribute to the curvature (decreasing slope) of the mt spectrum relative to 
Boltzmann reference e−βmt at increasing mt shown by the dashed curve in figure 3(c). 
Both contributions are included in parameter n in equation (4), when fitted to the single 
particle distribution, resulting in an apparent variance, 1/n, given by an incoherent sum of 
contributions from radial flow, 1/nflow , and effective temperature fluctuations, 1/nfluct, where 
1/n = 1/nflow + 1/nfluct. However, for the effective temperature fluctuation model developed 
in the preceding section only component 1/nfluct is relevant to the 2D Lévy saddle fit but it is 
not accessible because fits to correlation data (r̂ −1) poorly constrain absolute quantities 1/nh 

and 1/n1. However, differences 1(1/n)h,1 are well determined by the saddle curvatures, 

57 In the context of velocity/temperature fluctuations this quantity measures (β1 − β0)(β2 − β0)/β0 
2, the relative 

covariance of velocity/temperature fluctuations. 
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Figure 4. Left: pair-density net ratio rmodel[X(pt1), X(pt2)] − 1 for model fit to mid-central (b) 
Au–Au collisions. Right: residuals (data—model) for mid-central collisions. 

Table 1. Parameters and fitting errors (only) for the 2D velocity/temperature fluctuation model 
for each centrality bin, (a)–(d) (central–peripheral as in figure 1). Errors (last column) represent 
fitting uncertainties. Systematic errors are 7–12%.a Mean multiplicities of used particles in the 
acceptance, N , are listed for each centrality bin. Quantities S (last row) are correction factors for ¯ 

contamination and tracking inefficiency [6]. 

Centrality (d) (c) (b) (a) Errorb(%) 

¯ N 115.5 424.9 790.2 983.0 
C̃ × 104 −11.6 −0.820 0.787 0.750 6–14 
1(1/n)h × 104 3.54 0.611 0.183 0.118 6–24 
1(1/n)1 × 104 −8.61 −3.33 −2.53 −2.04 6–3 
1(1/n)tot × 104 12.2 3.95 2.71 2.16 

χ2/DoF 348 
286 

313 
286 

475 
286 

402 
286 

S 1.19 1.22 1.25 1.27 8c 

a Systematic errors for quantities in figure 5 (right panel), due to systematic uncertainties in the
 
data (7–12%) plus background and efficiency corrections (8%), are 11–14%.
 
b Range of fitting errors in per cent from peripheral to central.
 
c Systematic error.
 

nearly independently of the assumed value of 1/nfluct in rmodel. The maximum value for 1/nfluct 

corresponds to 1/n = 1/13 in the no-flow limit, 1/nflow = 0, where n = 13 is obtained from 
the Levy distribution fit to the single particle ´ mt spectrum [18]. The minimum value of 
0.0009 corresponds to that necessitated by the fitted values of 1(1/n)1 in table 1 in the limit 
1/n1 → 0. The fits were insensitive to variations of 1/nfluct in this range, intermediate value 
1/nfluct = 0.03 near the centre of the allowed range provided stable 1(1/n)h and 1(1/n)1 

fit values. Best-fit parameters and χ2/DoF for the saddle fits are listed in table 1. The model 
function and residuals for the fit to centrality (b) are shown in figure 4. 

Two-dimensional saddle-fit residuals, as in figure 4 (right panel), are approximately 
constant along directions parallel to the X(pt )1 = X(pt1) − X(pt2) axis for each value of 
X(pt)h and are small for X(pt )h < 1.5. The L ́evy temperature fluctuation model adequately 
describes the saddle structure. Residuals from the fit for mid-central events (b) are shown 
in figure 5 (left panel) projected onto sum variable X(pt)h . Errors are included in the data 
symbols and are smaller than those in figure 4 (right panel) due to bin averaging. Residuals 
for other centralities are similar, but differ in amplitude. We hypothesize that this residual 
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Figure 5. Left: residuals from 2D Lévy saddle fit to mid-central (b) data in figure 1 projected 
onto sum variable X(pt )h = X(pt1) + X(pt2). Right: efficiency-corrected per-particle saddle-
curvature measures (see footnote 59) on centrality ν: N1(1/n)h (dots), −S ¯S ¯ N1(1/n)1 
(triangles) and S ¯ N1(1/n)tot (open circles). Data symbols include fitting errors only (see footnote 
58). Solid lines are linear fits. 

structure is due to correlated final-state hadrons associated with initial-state semi-hard parton 
scattering [33]. 

Centrality dependences of efficiency-corrected model parameters S ¯ 58 whichN1(1/n), 
determine saddle-shape correlation amplitudes in figure 1, are shown in figure 5 (right 
panel). The linear trends suggested by the solid lines are notable. Multiplication by 
factor SN ¯ estimates correlation amplitudes per final state primary particle as discussed 
below. Centrality measure ν estimates the mean participant path length as the average 
number of encountered nucleons per participant nucleon in the incident nucleus. For this 
analysis ν ≡ 5.5(N/N0)

1/3 5.5(Npart/Npart,max)
1/3 2Nbin/Npart, based on Glauber-model 

simulations where Npart (Nbin) is the number of participant nucleons (binary collisions). 
¯The reasons for multiplying the parameters in table 1 by S and N are the following. 

Multiplication of (r̂ − 1) by N yields the density of correlated pairs per final-state particle ¯ 

[21], typically O(1) for all centralities. N(r̂ − 1) would be independent of centrality if ¯ 

Au–Au collisions were linear superpositions of p–p collisions (participant scaling) because 
the amplitude of the numerator of (r̂ − 1), which is proportional to the density of correlated 

¯pairs, would scale with participant number, or in this model with N , while the denominator 
is proportional to N2 . Therefore variation of ¯ r − 1) with centrality directly displays the ¯ N(ˆ
effects of those aspects of Au–Au collisions which do not follow naı̈ve p–p superposition. 
Factor S is defined as the ratio of true, primary particle yield (i.e., 100% tracking efficiency 
and no background contamination) estimated for these data in [18] divided by the actual 
multiplicity used in this analysis corrected for the ∼7% background contamination. S is 
essentially the reciprocal of the charged-particle tracking efficiency, specific for the present 
analysis. Multiplication by factor SN ¯ of the parameters in table 1 therefore estimates the 
correlation amplitudes per final-state particle for 100% tracking efficiency and no background 
contamination, assuming that the measured correlations include background-primary particle 
correlations half-way between the limits described in section 3.3. The uncertainty in 
extrapolating to the true primary particle yield is estimated to be 8%, most of which is due 
to the 7% systematic uncertainty in the measured charged hadron yield [18]. The combined 

58 Multiplication by SN ¯ gives per-particle, rather than per-pair, correlation amplitudes which better reveal non
trivial centrality dependences for A–A collisions relative to an independent nucleon–nucleon collision superposition 
hypothesis. For the latter case the rescaled correlation amplitudes would be independent of centrality. 
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systematic uncertainty for the efficiency corrected amplitudes is from ±11 − 14% across the 
X(pt1) versus X(pt2) space. 

6. Discussion 

Correlations on pt have two main components, a saddle shape and a peak at higher pt . By  
measuring the saddle curvatures we infer the relative covariance of two-point distribution 
g2(β1, β2) and hence the average two-point correlation amplitude of the temperature/velocity 
structure of the composite particle source. We now consider possible dynamical origins of 
that structure. 

The analysis of the saddle-shape produces accurate results for relative variance differences ( }/ ( }/
1(1/n)h = σ 2 −σ 2 β0 

2,1(1/n)1 = σ 2 −σ 2 β0 
2, and the corresponding 1(1/n)tot = βh β β1 β ( }/

σ 2 −σ 2 β0 
2 for effective temperature fluctuations. The measurements do not constrain the βh β1 

absolute magnitudes of the individual variances, σ 2 and σ 2 . The minimum possible values, βh β1 

consistent with the saddle-shape conditions and the single-particle mt spectra, correspond to 
σ 2 = 0 and 1/nfluct = −1(1/n)1, resulting in σβ/β0 = σT /T0∼ = 1.4% to 2.9% global eventβ1 

to-event temperature/velocity fluctuation from central to peripheral collisions, respectively. 
In this case 1/n ∼= 1/nflow and global temperature/velocity fluctuations contribute negligibly 
to the upward curvature of the dN/mt dmt spectrum. The maximum values for the variances √∼
where σβ1 ∼ σβ , corresponding to 30% local temperature/velocity fluctuations within each 
event, a significantly non-equilibrated system. Thus, local temperature variation could range 
between 0 and 30%. One can ask what is the source of the fluctuating effective temperature, 
and is local source velocity rather than temperature a more appropriate quantity? 

Given the correlation peaks at higher pt it is reasonable to offer the hypothesis that the 
saddle-shape correlation structure in figure 1 results from in-medium modification, specifically 
momentum dissipation on (pt1, pt2) of a two-particle distribution from fragmenting, semi-
hard scattered partons in the initial-stage of the collision. Since no selection was made 
on leading particle or high-pt ‘trigger’ particle for these data we refer to the hadrons 
associated with a semi-hard, initial-state scattered parton as a minijet [9, 34]. Minijet 
production in Au–Au collisions should increase approximately linearly with Nbin [35, 36] 
while the subsequent momentum dissipation should monotonically increase with greater 
minijet production. Correlation amplitudes per final state particle (the latter approximately 
proportional to Npart) should therefore increase monotonically with mean participant path 
length ν ∼

correspond to 1/nflow = 0, resulting in 1/nfluct = 1/n and σβ/β0 = σT /T0 = 1/n = 30%, 

= Nbin/(Npart/2), thus providing a basis for experimental tests of this hypothesis. 
The linear trends in figure 5 (right panel) therefore support, but do not require, a minijet– 

momentum dissipation mechanism for the observed correlations on pt . In figure 5 we also 
observe (1) reduced curvature along the sum direction and (2) increased curvature along the 
difference direction which may represent respectively transport of semi-hard parton structure 
to lower pt and a more correlated bulk medium. Given a minijet interpretation of S ¯ N1(1/n)tot, 
the combined trends (1) and (2) represent strong evidence for increased parton dissipation in 
the more central Au–Au collisions. The present results complement the observed suppression 
of high-pt spectra (RAA) [35, 36] and suppression of large angle trigger-particle–associated
particle conditional distributions on 1φ [4, 5] in central Au–Au collisions at RHIC. It is very 
likely that the lower-pt fluctuations and correlations reported here are, at least in large part, a 
consequence of the processes which lead to the above suppressions at higher-pt . 

It is important to note that these correlations on transverse momentum observed at 
relatively low pt reveal nominally ‘soft’ structure in relativistic heavy ion collisions which 
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scales with the number of binary collisions Nbin, whereas a low-pt inclusive quantity such as 
multiplicity scales with participant number Npart. Binary-collision scaling is conventionally 
thought to be an aspect of high-pt physics and initial-state scattering. This analysis suggests 
that substantial effects of initial-state parton scattering are manifest at low pt in more central 
heavy ion collisions. 

7. Summary 

In conclusion, the dynamical origins of excess (pt ) fluctuations in Au–Au collisions at RHIC 
are studied in this analysis of two-particle correlations on (pt1, pt2). The velocity/temperature 
structure of heavy ion collisions suggested by these correlations is unanticipated by theoretical 
models [9–11]. Lacking in these models is the simultaneous inclusion of hard scattering in 
the initial state with subsequent medium modification of the fragmentation function and/or 
interactions between the medium and the hadrons associated with the scattered partons. 
Nevertheless it seems plausible to interpret the observed correlations on (pt1, pt2) as resulting 
from this sort of semi-hard parton scattering and subsequent medium modified fragmentation 
and/or associated hadron distributions on pt in the more central Au–Au collisions. In this 
picture, with increasing centrality the transverse momentum associated with the two-particle 
fragment distribution from initial-state semi-hard parton scattering is shifted to lower pt , 
asymptotically approaching a form consistent with random velocity/temperature variations 
(Lévy saddle) as a manifestation of substantial but incomplete equilibration. These newly-
observed pt correlations may thus reveal minijet dissipation in the medium produced by 
Au–Au collisions at RHIC. 
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