96 research outputs found
Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo
The Endo16 gene of Strongylocentrotus purpuratus is expressed at the blastula stage of embryogenesis throughout the vegetal plate, at the gastrula stage in the whole of the archenteron and in postgastrular stages only in the midgut. We showed earlier that a 2300 bp upstream sequence suffices to faithfully recreate this pattern of expression when fused to a CAT reporter gene. Here we define the functional organization of this cis-regulatory domain, which includes over thirty high specificity binding sites, serviced by at least thirteen different putative transcription factors, in addition to >20 sites for a factor commonly found in the regulatory sequences of other sea urchin genes as well (SpGCF1). The Endo16 cis-regulatory domain consists of several different functional elements, or modules, each containing one or two unique DNA-binding factor target sites, plus sites for factors binding in other modules as well. Modular regulatory function was defined in experiments in which regions of the cis-regulatory DNA containing specific clusters of sites were tested in isolation, combined with one another, or by selective deletion, and the effects on expression of the CAT reporter were determined by whole-mount in situ hybridization or CAT enzyme activity measurements. The most proximal module (A) is mainly responsible for early embryonic expression, and module A alone suffices to locate expression in the vegetal plate and archenteron. The adjacent module (B) is responsible for a steep postgastrular rise in expression, when the gene is transcribed only in the midgut and, prior to this module B alone also suffices to promote expression in the vegetal plate and archenteron. The most distal module, G, acts as a booster for either A or B modules. However, no combination of A, B and G modules generates vegetal plate or gut expression exclusively. Ectopic expression of A-, B- and G-CAT fusion constructs occurs in the adjacent (veg1-derived) ectoderm and in skeletogenic mesenchyme cells. For expression to be confined to endoderm requires negative regulatory functions mediated by modules E, F and DC. Modules E and F each repress ectopic expression specifically in veg1 ectoderm. Module DC represses ectopic expression specifically in skeletogenic mesenchyme. Expression of some Endo16 constructs is dramatically increased by treatment with LiCl, which expands the territory in which the endogenous Endo16 gene is expressed at the expense of veg1 ectoderm. The same modules that act to repress ectopic expression in untreated embryos are required for enhanced expression of constructs after LiC1 treatment. Furthermore, both the negative spatial control functions and response to LiC1 require the presence of module A. The total regulatory requirements of the Endo16 gene during embryogenesis can be expressed in terms of the positive and negative functions of the individual modules and the interactions between modules that are identified in this study
Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control
The endo16 gene of Strongylocentrotus purpuratus encodes a secreted protein of the embryonic and larval midgut. The overall functional organization of the spatial and temporal control system of this gene are relatively well known from a series of earlier cis-regulatory studies. Our recent computational model for the logic operations of the proximal region of the endo16 control system (Module A) specifies the function of interactions at each transcription factor target site of Module A. Here, we extend sequence level functional analysis to the adjacent cis-regulatory region, Module B. The computational logic model is broadened to include B/A interactions as well as other Module B functions. Module B drives expression later in development and its major activator is responsible for a sharp, gut-specific increase in transcription after gastrulation. As shown earlier, Module B output undergoes a synergistic amplification that requires interactions within Module A. The interactions within Module B that are required to generate and transmit its output to Module A are identified. Logic considerations predicted an internal cis-regulatory switch by which spatial control of endo16 expression is shifted from Module A (early) to Module B (later). This prediction was confirmed experimentally and a distinct set of interactions in Module B that mediate the switch function was demonstrated. The endo16 computational model now provides a detailed explanation of the information processing functions executed by the cis-regulatory system of this gene throughout embryogenesis. Early in development the gene participates in the specification events that define the endomesoderm; later it functions as a gut-specific differentiation gene. The cis-regulatory switch mediates this functional change
Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene
Embryonic expression of the Endo16 gene of Strongylocentrotus purpuratus is controlled by interactions with at least 13 different DNA-binding factors. These interactions occur within a cis-regulatory domain that extends about 2300 bp upstream from the transcription start site. A recent functional characterization of this domain reveals six different subregions, or cis-regulatory modules, each of which displays a specific regulatory subfunction when linked with the basal promoter and in some cases various other modules (C.-H. Yuh and E. Davidson (1996) Development 122, 1069-1082). In the present work, we analyzed quantitative time-course measurements of the CAT enzyme output of embryos bearing expression constructs controlled by various Endo16 regulatory modules, either singly or in combination. Three of these modules function positively in that, in isolation, each is capable of promoting expression in vegetal plate and adjacent cell lineages, though with different temporal profiles of activity. Models for the mode of interaction of the three positive modules with one another were tested by assuming mathematical relations that would generate, from the measured single module time courses, the experimentally observed profiles of activity obtained when the relevant modules are physically linked in the same construct. The generated and observed time functions were compared, and the differences were minimized by least squares adjustment of a scale parameter. When the modules were tested in context of the endogenous promoter region, one of the positive modules (A) was found to increase the output of the others (B and G), by a constant factor. In contrast, a solution in which the time-course data of modules A and B are multiplied by one another was required for the interrelations of the positive modules when a minimal SV40 promoter was used. One interpretation is that, in this construct, each module independently stimulates the basal transcription complex. We used a similar approach to analyze the repressive activity of the three Endo16 cis-regulatory modules that act negatively in controlling spatial expression. The evidence obtained confirms that the repressive modules act only by affecting the output of module A (C.-H. Yuh and E. Davidson (1996) Development 122, 1069-1082). A new hierarchical model of the cis-regulatory system was formulated in which module A plays a central integrating role, and which also implies specific functions for certain DNA-binding sites within the basal promoter fragment of the gene. Additional kinetic experiments were then carried out, and key aspects of the model were confirmed
Modular cis-regulatory organization of developmentally expressed genes: Two genes transcribed territorially in the sea urchin embryo, and additional examples
The cis-regulatory systems that control developmental expression of two sea urchin genes have been subjected to detailed functional analysis. Both systems are modular in organization: specific, separable fragments of the cis-regulatory DNA each containing multiple transcription factor target sites execute particular regulatory subfunctions when associated with reporter genes and introduced into the embryo. The studies summarized here were carried out on the CyIIIa gene, expressed in the embryonic aboral ectoderm and on the Endo16 gene, expressed in the embryonic vegetal plate, archenteron, and then midgut. The regulatory systems of both genes include modules that control particular aspects of temporal and spatial expression, and in both the territorial boundaries of expression depend on a combination of negative and positive functions. In both genes different regulatory modules control early and late embryonic expression. Modular cis-regulatory organization is widespread in developmentally regulated genes, and we present a tabular summary that includes many examples from mouse and Drosophila. We regard cis-regulatory modules as units of developmental transcription control, and also of evolution, in the assembly of transcription control systems
Patchy Interspecific Sequence Similarities Efficiently Identify Positive cis-Regulatory Elements in the Sea Urchin
We demonstrate that interspecific sequence conservation can provide a systematic guide to the identification of functional cis-regulatory elements within a large expanse of genomic DNA. The test was carried out on the otx gene of Strongylocentrotus purpuratus. This gene plays a major role in the gene regulatory network that underlies endomesoderm specification in the embryo. The cis-regulatory organization of the otx gene is expected to be complex, because the gene has three different start sites (X. Li, C.-K. Chuang, C.-A. Mao, L. M. Angerer, and W. H. Klein, 1997, Dev. Biol. 187, 253–266), and it is expressed in many different spatial domains of the embryo. BAC recombinants containing the otx gene were isolated from Strongylocentrotus purpuratus and Lytechinus variegatus libraries, and the ordered sequence of these BACs was obtained and annotated. Sixty kilobases of DNA flanking the gene, and included in the BAC sequence from both species, were scanned computationally for short conserved sequence elements. For this purpose, we used a newly constructed software package assembled in our laboratory, “FamilyRelations.” This tool allows detection of sequence similarities above a chosen criterion within sliding windows set at 20–50 bp. Seventeen partially conserved regions, most a few hundred base pairs long, were amplified from the S. purpuratus BAC DNA by PCR, inserted in an expression vector driving a CAT reporter, and tested for cis-regulatory activity by injection into fertilized S. purpuratus eggs. The regulatory activity of these constructs was assessed by whole-mount in situ hybridization (WMISH) using a probe against CAT mRNA. Of the 17 constructs, 11 constructs displayed spatially restricted regulatory activity, and 6 were inactive in this test. The domains within which the cis-regulatory constructs were expressed are approximately consistent with results from a WMISH study on otx expression in the embryo, in which we used probes specific for the mRNAs generated from each of the three transcription start sites. Four separate cis-regulatory elements that specifically produce endomesodermal expression were identified, as well as ubiquitously active elements, and ectoderm-specific elements. We confirm predictions from other work with respect to target sites for specific transcription factors within the elements that express in the endoderm
Long Term Stabilization of Expanding Aortic Aneurysms by a Short Course of Cyclosporine A through Transforming Growth Factor-Beta Induction
Abdominal aortic aneurysms (AAAs) expand as a consequence of extracellular matrix destruction, and vascular smooth muscle cell (VSMC) depletion. Transforming growth factor (TGF)-beta 1 overexpression stabilizes expanding AAAs in rat. Cyclosporine A (CsA) promotes tissue accumulation and induces TGF -beta1 and, could thereby exert beneficial effects on AAA remodelling and expansion. In this study, we assessed whether a short administration of CsA could durably stabilize AAAs through TGF-beta induction. We showed that CsA induced TGF-beta1 and decreased MMP-9 expression dose-dependently in fragments of human AAAs in vitro, and in animal models of AAA in vivo. CsA prevented AAA formation at 14 days in the rat elastase (diameter increase: CsA: 131.9±44.2%; vehicle: 225.9±57.0%, P = 0.003) and calcium chloride mouse models (diameters: CsA: 0.72±0.14 mm; vehicle: 1.10±0.11 mm, P = .008), preserved elastic fiber network and VSMC content, and decreased inflammation. A seven day administration of CsA stabilized formed AAAs in rats seven weeks after drug withdrawal (diameter increase: CsA: 14.2±15.1%; vehicle: 45.2±13.7%, P = .017), down-regulated wall inflammation, and increased αSMA-positive cell content. Co-administration of a blocking anti-TGF-beta antibody abrogated CsA impact on inflammation, αSMA-positive cell accumulation and diameter control in expanding AAAs. Our study demonstrates that pharmacological induction of TGF-beta1 by a short course of CsA administration represents a new approach to induce aneurysm stabilization by shifting the degradation/repair balance towards healing
Generation of tumor-initiating cells by exogenous delivery of OCT4 transcription factor
Abstract Introduction Tumor-initiating cells (TIC) are being extensively studied for their role in tumor etiology, maintenance and resistance to treatment. The isolation of TICs has been limited by the scarcity of this population in the tissue of origin and because the molecular signatures that characterize these cells are not well understood. Herein, we describe the generation of TIC-like cell lines by ectopic expression of the OCT4 transcription factor (TF) in primary breast cell preparations. Methods OCT4 cDNA was over-expressed in four different primary human mammary epithelial (HMEC) breast cell preparations from reduction mammoplasty donors. OCT4-transduced breast cells (OTBCs) generated colonies (frequency ~0.01%) in self-renewal conditions (feeder cultures in human embryonic stem cell media). Differentiation assays, immunofluorescence, immunohistochemistry, and flow cytometry were performed to investigate the cell of origin of OTBCs. Serial dilutions of OTBCs were injected in nude mice to address their tumorigenic capabilities. Gene expression microarrays were performed in OTBCs, and the role of downstream targets of OCT4 in maintaining self-renewal was investigated by knock-down experiments. Results OTBCs overcame senescence, overexpressed telomerase, and down-regulated p16INK4A . In differentiation conditions, OTBCs generated populations of both myoepithelial and luminal cells at low frequency, suggesting that the cell of origin of some OTBCs was a bi-potent stem cell. Injection of OTBCs in nude mice generated poorly differentiated breast carcinomas with colonization capabilities. Gene expression microarrays of OTBC lines revealed a gene signature that was over-represented in the claudin-low molecular subtype of breast cancer. Lastly, siRNA-mediated knockdown of OCT4 or downstream embryonic targets of OCT4, such as NANOG and ZIC1, suppressed the ability of OTBCs to self-renew. Conclusions Transduction of OCT4 in normal breast preparations led to the generation of cell lines possessing tumor-initiating and colonization capabilities. These cells developed high-grade, poorly differentiated breast carcinomas in nude mice. Genome-wide analysis of OTBCs outlined an embryonic TF circuitry that could be operative in TICs, resulting in up-regulation of oncogenes and loss of tumor suppressive functions. These OTBCs represent a patient-specific model system for the discovery of novel oncogenic targets in claudin-low tumors
Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
- …