16 research outputs found

    Oxygen-regulated gene expression in murine cumulus cells

    Get PDF
    Oxygen is an important component of the environment of the cumulus–oocyte complex (COC), both in vivo within the ovarian follicle and during in vitro oocyte maturation (IVM). Cumulus cells have a key role in supporting oocyte development, and cumulus cell function and gene expression are known to be altered when the environment of the COC is perturbed. Oxygen-regulated gene expression is mediated through the actions of the transcription factors, the hypoxia-inducible factors (HIFs). In the present study, the effect of oxygen on cumulus cell gene expression was examined following in vitro maturation of the murine COC at 2%, 5% or 20% oxygen. Increased expression of HIF-responsive genes, including glucose transporter-1, lactate dehydrogenase A and BCL2/adenovirus E1B interacting protein 3, was observed in cumulus cells matured at 2% or 5%, compared with 20% oxygen. Stabilisation of HIF1α protein in cumulus cells exposed to low oxygen was confirmed by western blot and HIF-mediated transcriptional activity was demonstrated using a transgenic mouse expressing green fluorescent protein under the control of a promoter containing hypoxia response elements. These results indicate that oxygen concentration influences cumulus cell gene expression and support a role for HIF1α in mediating the cumulus cell response to varying oxygen.Karen L. Kind, Kimberley K. Y. Tam, Kelly M. Banwell, Ashley D. Gauld, Darryl L. Russell, Anne M. Macpherson, Hannah M. Brown, Laura A. Frank, Daniel J. Peet and Jeremy G. Thompso

    Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period

    Get PDF
    Exposure of cumulus–oocyte complexes to the hyperglycaemia mimetic, glucosamine, during in vitro maturation impairs embryo development, potentially through upregulation of the hexosamine biosynthesis pathway. This study examined the effects of in vivo periconception glucosamine exposure on reproductive outcomes in young healthy mice, and further assessed the effects in overweight mice fed a high-fat diet. Eight-week-old mice received daily glucosamine injections (20 or 400 mg kg⁻¹) for 3–6 days before and 1 day after mating (periconception). Outcomes were assessed at Day 18 of gestation. Glucosamine treatment reduced litter size independent of dose. A high-fat diet (21% fat) for 11 weeks before and during pregnancy reduced fetal size. No additional effects of periconception glucosamine (20 mg kg⁻¹) on pregnancy outcomes were observed in fat-fed mice. In 16-week-old mice fed the control diet, glucosamine treatment reduced fetal weight and increased congenital abnormalities, but did not alter litter size. As differing effects of glucosamine were observed in 8-week-old and 16-week-old mice, maternal age effects were assessed. Periconception glucosamine at 8 weeks reduced litter size, whereas glucosamine at 16 weeks reduced fetal size. Thus, in vivo periconception glucosamine exposure perturbs reproductive outcomes in mice, with the nature of the outcomes dependent upon maternal age.Cheryl J. Schelbach, Rebecca L. Robker, Brenton D. Bennett, Ashley D. Gauld, Jeremy G. Thompson and Karen L. Kindhttp://www.publish.csiro.au/paper/RD11313.ht

    Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus-oocyte complexes

    Get PDF
    The IVM of mammalian cumulus–oocyte complexes (COCs) yields reduced oocyte developmental competence compared with oocytes matured in vivo. Altered cumulus cell function during IVM is implicated as one cause for this difference. We have conducted a microarray analysis of cumulus cell mRNA following IVM or in vivo maturation (IVV). Mouse COCs were sourced from ovaries of 21-day-old CBAB6F1 mice 46 h after equine chorionic gonadotrophin (5 IU, i.p.) or from oviducts following treatment with 5 IU eCG (61 h) and 5 IU human chorionic gonadotrophin (13 h). IVM was performed in α-Minimal Essential Medium with 50 mIU FSH for 17 h. Three independent RNA samples were assessed using the Affymetrix Gene Chip Mouse Genome 430 2.0 array (Affymetrix, Santa Clara, CA, USA). In total, 1593 genes were differentially expressed, with 811 genes upregulated and 782 genes downregulated in IVM compared with IVV cumulus cells; selected genes were validated by real-time reverse transcription–polymerase chain reaction (RT-PCR). Surprisingly, haemoglobin α (Hba-a1) was highly expressed in IVV relative to IVM cumulus cells, which was verified by both RT-PCR and western blot analysis. Because haemoglobin regulates O2 and/or nitric oxide availability, we postulate that it may contribute to regulation of these gases during the ovulatory period in vivo. These data will provide a useful resource to determine differences in cumulus cell function that are possibly linked to oocyte competence.Karen L. Kind, Kelly M. Banwell, Kathryn M. Gebhardt, Anne Macpherson, Ashley Gauld, Darryl L. Russell and Jeremy G. Thompso

    IL11-mediated stromal cell activation may not be the master regulator of pro-fibrotic signaling downstream of TGFβ

    Get PDF
    Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFβ. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFβ signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFβ at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFβ-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis

    References

    No full text
    corecore