10,201 research outputs found

    NN Final-State Interaction in the Helicity Dependence of Inclusive π\pi^- Photoproduction from the Deuteron

    Full text link
    The helicity dependence of the inclusive π\pi^- photoproduction reaction from the deuteron in the Δ\Delta(1232)-resonance region is investigated with inclusion of final-state nucleon-nucleon rescattering (NNNN-FSI). For the elementary π\pi-production operator an effective Lagrangian model which includes the standard pseudovector Born terms and a contribution from the Δ\Delta-resonance is used. The half-off-shell NNNN-scattering matrix is obtained from a separable representation of a realistic NNNN-interaction. The differential polarized cross-section difference for parallel and antiparallel helicity states is predicted and compared with experiment. We find that the effect of NNNN-FSI is much less important in the helicity difference than in the previously studied unpolarized differential cross section. Furthermore, the contribution of d(γ,π)pp\vec d(\vec\gamma,\pi^-)pp to the deuteron spin asymmetry is explicitly evaluated with inclusion of NNNN-FSI. It has been found that the effect of NNNN-FSI is much larger in the asymmetry than in the total cross section, and this leads to an appreciable reduction of the spin asymmetry in the Δ\Delta-region. Inclusion of such effect also leads to improved and quite satisfactory agreement with existing experimental data.Comment: 13 pages, 6 eps figures, published in Prog. Theor. Phys. 113 (2005) 169-18

    Impact of hybrid renewable energy systems on short circuit levels in distribution networks

    Get PDF
    The effects of the distributed generation can be classified as environmental, technical and economical effects. It is playing a very vital role for improving the voltage profiles in electrical power systems. However, it could have some negative impacts such as operating conflicts for fault clearing and interference with relaying. Distribution system is the link between the utility system and the consumer. It is divided into three categories radial, Loop, and network. Distribution networks are the most commonly used to cover huge number of loads. The power system reliability mainly depends on the smooth operation and continuity of supply of the distribution network. However, this may not always be guaranteed especially with the introduction of distributed generation to the distribution network. This paper will examine the impact of hybrid renewable energy systems (using photovoltaic and doubly fed induction generators) on short circuit level of IEEE 13-bus distribution test system using ETAP software

    UPS system: How can future technology and topology improve the energy efficiency in data centers?

    Get PDF
    A Data Center can consist of a large group of networked servers and associated power distribution, networking, and cooling equipment. All these applications consume enormous amounts of energy which result in a significant increase in energy inefficiency problems. One of the causes of Data Center energy inefficiency power distribution is from the uninterruptible power supply (UPS). The UPS system is an alternate or backup source of power linking between mains power supply and end critical loads in order to provide back-up power and protection for the sensitive load. This study attempts to answer the question of how can future UPS topology and technology improve the efficiency of Data Center. In order to analyze the impact of different UPS technologies and their operating efficiencies, a model for a medium size Data Centre is developed, and load schedules and worked schematics were created to analyze and test the components of each of the UPS system topologies

    Power loss investigation in HVDC for cascaded H-bridge multilevel inverters (CHB-MLI)

    Get PDF
    In the last decade, the use of voltage-source multilevel inverters in industrial and utility power applications has been increased significantly mainly due to the many advantages of multilevel inverters, compared to conventional two level inverters. These advantages include: 1) higher output voltage at low switching frequency, 2) low voltage stress (dv/dt), 3) lower total harmonic distortion (THD), 4) less electro-magnetic interference (EMI), 5) smaller output filter, and 6) higher fundamental output. However, the computation of multilevel inverter power losses is much more complicated compared to conventional two level inverters. This paper presents a detailed investigation of CHB-MLI losses for HVDC. Different levels, and IGBT switching devices have been considered in the study. The inverter has been controlled using selective harmonic elimination in which the switching angles were determined using the Genetic Algorithm (GA). MATLAB-SIMULINK is used for the modelling and simulation. This investigation should result in a deeper knowledge and understanding of the performance of CHB-MLI using different IGBT switching devices

    Single-chip inverter for active filters

    Get PDF
    Generally inverter-based active filters, which employ pulse-width-modulated (PWM) techniques, use microprocessors for overall control and discrete logic for the generation of switching patterns. Because of the complexity of control required, discrete logic circuits tend to have a very high component count, making system design inflexible, expensive and less reliable than integrated circuit implementation. The work reported here presents a novel design of a single-chip controlled PWM inverter-based active filter, which addresses these issues

    Harmonic correction in power supplies feeding non-linear loads

    Get PDF
    This paper focuses on the design of an electronic circuit which can be used in conjunction with the power supplies used at the input of non-linear loads (computers, TV sets, etc.) in order to filter out the input current harmonics in such loads. The electronic circuit will fill the gaps of the distorted current waveform so that it becomes sinusoidal and also in phase with the mains supply. In this paper different configurations of the proposed electronic circuit are covered (depending on the location with respect to the non-linear load). An optimization algorithm is carried out in order to find the best location, minimum device rating for different type of loads. The proposed circuit monitors the input current, output voltage and power rating of the power supply. The circuit will then decide whether to filter the input current harmonics or the output voltage harmonics. The circuit will also optimize the best switching frequency for the required load so that the power supply operates at the maximum possible efficiency
    corecore