41,578 research outputs found

    The LHCb Vertex Locator performance and Vertex Locator upgrade

    Full text link
    LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 μ\rm \mum. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 1016^{16} 1 MeVneq/cm2\rm n_{eq}/cm^2, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 μm\rm \mu m pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.Comment: Proceedings for the "*14th International Workshop on Radiation Imaging Detector IWORID 2012*

    The daily market for funds in Europe: Mathematical appendix

    Get PDF
    This paper includes the derivations of the main expressions in the paper ``The Daily Market for Funds in Europe: Has Something Changed With the EMU?'' by G. Pérez Quirós and H. Rodríguez Mendizábal.Overnight rates, reserve demand, martingale hypothesis

    Upgrading Relational Legacy Data to eh Semantic Web

    Get PDF
    In this poster, we describe a framework composed of the R2O mapping language and the ODEMapster processor to upgrade relational legacy data to the Semantic Web. The framework is based on the declarative description of mappings between relational and ontology elements and the exploitation of such mapping descriptions by a generic processor capable of performing both massive and query driven data upgrade

    A 64-channel inductively-powered neural recording sensor array

    Get PDF
    This paper reports a 64-channel inductively powered neural recording sensor array. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements a local auto-calibration mechanism which configures the transfer characteristics of the recording site. The system has two operation modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are transmitted. Data streams coming from the channels are serialized by an embedded digital processor and transferred to the outside by means of the same inductive link used for powering the system. Simulation results show that the power consumption of the complete system is 377μW.Ministerio de Ciencia e Innovación TEC2009-0844

    A power efficient neural spike recording channel with data bandwidth reduction

    Get PDF
    This paper presents a mixed-signal neural spike recording channel which features, as an added value, a simple and low-power data compression mechanism. The channel uses a band-limited differential low noise amplifier and a binary search data converter, together with other digital and analog blocks for control, programming and spike characterization. The channel offers a self-calibration operation mode and it can be configured both for signal tracking (to raw digitize the acquired neural waveform) and feature extraction (to build a first-order PWL approximation of the spikes). The prototype has been fabricated in a standard CMOS 0.13μm and occupies 400μm×400μm. The overall power consumption of the channel during signal tracking is 2.8μW and increases to 3.0μW average when the feature extraction operation mode is programmed.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281
    corecore