382 research outputs found

    Susceptibility of twelve soft wheat varieties (Triticum aestivum) to Sitophilus granarius (L.) (Coleoptera: Curculionidae)

    Get PDF
    International audienceThe aim of study is the effect of trophic medium of twelve soft wheat varieties on the biotic potential of S.granarius L. After 3 months of storage under laboratory conditions at 27 ± 2 ° C and 70 ± 5% rh, have reveals that the preferred varieties for development of this species are Hidhab, Mahon Demias, Arfort and Siete Ceros. This latest was found to be the most susceptible. Growth index and loss were highest with 2.08 and 3.27% respectively. Laboratory analysis of the main grain components of the different varieties suggested that the susceptibility of these varieties to S. granarius infestation may be attributed to the high content of protein and low content of carbohydrate compared to resistance varieties

    Conservation of the links between gene transcription and chromosomal organization in the highly reduced genome of Buchnera aphidicola

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic studies on bacteria have clearly shown the existence of chromosomal organization as regards, for example, to gene localization, order and orientation. Moreover, transcriptomic analyses have demonstrated that, in free-living bacteria, gene transcription levels and chromosomal organization are mutually influenced. We have explored the possible conservation of relationships between mRNA abundances and chromosomal organization in the highly reduced genome of <it>Buchnera aphidicola</it>, the primary endosymbiont of the aphids, and a close relative to <it>Escherichia coli</it>.</p> <p>Results</p> <p>Using an oligonucleotide-based microarray, we normalized the transcriptomic data by genomic DNA signals in order to have access to inter-gene comparison data. Our analysis showed that mRNA abundances, gene organization (operon) and gene essentiality are correlated in <it>Buchnera </it>(i.e., the most expressed genes are essential genes organized in operons) whereas no link between mRNA abundances and gene strand bias was found. The effect of <it>Buchnera </it>genome evolution on gene expression levels has also been analysed in order to assess the constraints imposed by the obligate symbiosis with aphids, underlining the importance of some gene sets for the survival of the two partners. Finally, our results show the existence of spatial periodic transcriptional patterns in the genome of <it>Buchnera</it>.</p> <p>Conclusion</p> <p>Despite an important reduction in its genome size and an apparent decay of its capacity for regulating transcription, this work reveals a significant correlation between mRNA abundances and chromosomal organization of the aphid-symbiont <it>Buchnera</it>.</p

    New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments.

    Get PDF
    epub ahead of printInternational audience: RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids

    A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations

    Get PDF
    Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system

    Aphid resistance in florist's chrysanthemum (Chrysanthemum morifolium Ramat.) induced by sea anemone equistatin overexpression

    Get PDF
    Florist's chrysanthemum (Chrysanthemum morifolium Ramat.) belongs to the Asteraceae family and represents the second most important floricultural crop in the world. Most genotypes are sensitive to aphids and infestations can lower quality and cause transmission of viruses. The protease inhibitor Sea Anemone Equistatin (SAE) carries three domains responsible for the inhibition of both cysteine and aspartic proteases. Artificial diet bioassays showed that SAE is readily toxic when ingested by the pea aphid, Acyrthosiphon pisum, and the cotton aphid, Aphis gossypii. We transformed chrysanthemum genotype 1581 by Agrobacterium tumefaciens-mediated transformation with the SAE gene under the control of the chrysanthemum RbcS promoter to induce aphid resistance. Non-choice leaf disk and whole plant bioassays were carried out to analyze deleterious effects of SAE on population growth and survival of both Myzus persicae and A. gossypii. After 7 days, M. persicae populations on specific transgenic lines were up to 69% smaller relative to control populations in a whole plant bioassay. The mortality of cotton aphids was 11% on control lines and up to 32% on transgenic lines after 5 days. The results show that SAE may be a promising agent for the control of some aphid species in transgenic plants. Key words: Chrysanthemum morifolium, aphid resistance, RbcS promoter, sea anemone equistatin, agrobacterium transformation

    Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)

    Get PDF
    Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.Beatriz Sabater-Muñoz... et al

    A barley cysteine-protease inhibitor reduces teh performance of two aphid species in artificial diets and transgenic arabidopsis plants

    Get PDF
    Cystatins from plants have been implicated in plant defense towards insects, based on their role as inhibitors of heterologous cysteine-proteinases. We have previously characterized thirteen genes encoding cystatins (HvCPI-1 to HvCPI-13) from barley (Hordeum vulgare), but only HvCPI-1 C68 → G, a variant generated by direct-mutagenesis, has been tested against insects. The aim of this study was to analyze the effects of the whole gene family members of barley cystatins against two aphids, Myzus persicae and Acyrthosiphon pisum. All the cystatins, except HvCPI-7, HvCPI-10 and HvCPI-12, inhibited in vitro the activity of cathepsin L- and/or B-like proteinases, with HvCPI-6 being the most effective inhibitor for both aphid species. When administered in artificial diets, HvCPI-6 was toxic to A. pisum nymphs (LC50 = 150 ÎŒg/ml), whereas no significant mortality was observed on M. persicae nymphs up to 1000 ÎŒg/ml. The effects of HvCPI-6 ingestion on A. pisum were correlated with a decrease of cathepsin B- and L-like proteinase activities. In the case of M. persicae, there was an increase of these proteolytic activities, but also of the aminopeptidase-like activity, suggesting that this species is regulating both target and insensitive enzymes to overcome the effects of the cystatin. To further analyze the potential of barley cystatins as insecticidal proteins against aphids, Arabidopsis plants expressing HvCPI-6 were tested against M. persicae. For A. pisum, which does not feed on Arabidopsis, a combined diet-Vicia faba plant bioassay was performed. A significant delay in the development time to reach the adult stage was observed in both species. The present study demonstrates the potential of barley cystatins to interfere with the performance of two aphid specie

    Multimodal dynamic response of the Buchnera aphidicola pLeu plasmid to variations in leucine demand of its host, the pea aphid Acyrthosiphon pisum

    Get PDF
    Aphids, important agricultural pests, can grow and reproduce thanks to their intimate symbiosis with the Îł-proteobacterium Buchnera aphidicola that furnishes them with essential amino acids lacking in their phloem sap diet. To study how B. aphidicola, with its reduced genome containing very few transcriptional regulators, responds to variations in the metabolic requirements of its host, we concentrated on the leucine metabolic pathway. We show that leucine is a limiting factor for aphid growth and it displays a stimulatory feeding effect. Our metabolic analyses demonstrate that symbiotic aphids are able to respond to leucine starvation or excess by modulating the neosynthesis of this amino acid. At a molecular level, this response involves an early important transcriptional regulation (after 12 h of treatment) followed by a moderate change in the pLeu plasmid copy number. Both responses are no longer apparent after 7 days of treatment. These experimental data are discussed in the light of a re-annotation of the pLeu plasmid regulatory elements. Taken together, our data show that the response of B. aphidicola to the leucine demand of its host is multimodal and dynamically regulated, providing new insights concerning the genetic regulation capabilities of this bacterium in relation to its symbiotic functions
    • 

    corecore