235 research outputs found

    Cooperative benefit for the combination of rapamycin and imatinib in tuberous sclerosis complex neoplasia

    Get PDF
    Tuberous sclerosis (TS) is a common autosomal-dominant disorder characterized by tumors of the skin, lung, brain, and kidneys. Monotherapy with rapamycin however resulted in partial regression of tumors, implying the involvement of additional pathways. We have previously implicated platelet-derived growth factor-BB in TS-related tumorigenesis, thus providing a rationale for a combination of mTOR/PDGF blockade using rapamycin and imatinib. Here, we test this combination using a well-established preclinical model of cutaneous tumorigenesis in TS, tsc2ang1 cells derived from a skin tumor from a mouse heterozygous for tsc2. Treatment of tsc2ang1 cells with a combination of rapamycin and imatinib led to an inhibition of proliferation compared with either vehicle treatment or treatment with rapamycin or imatinib monotherapy. Combination therapy also led to a decrease in Akt activation. Potent in vivo activity in animal experiments by combination therapy was noted, without toxicity to the animals. Our findings provide a rationale for the combined use of rapamycin and imatinib, both FDA approved drugs, for the treatment of TS

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    A European project on incidence, treatment, and outcome of sarcoma

    Get PDF
    Abstract BACKGROUND: Sarcomas are rare tumors (1-2% of all cancers) of mesenchymal origin that may develop in soft tissues and viscera. Since the International Classification of Disease (ICD) attributes visceral sarcomas (VS) to the organ of origin, the incidence of sarcoma is grossly underestimated. The rarity of the disease and the variety of histological types (more than 70) or locations account for the difficulty in acquiring sufficient personal experience. In view of the above the European Commission funded the project called Connective Tissues Cancers Network (CONTICANET), to improve the prognosis of sarcoma patients by increasing the level of standardization of diagnostic and therapeutic procedures through a multicentre collaboration. METHODS/DESIGN: Two protocols of epidemiological researches are here presented. The first investigation aims to build the population-based incidence of sarcoma in a two-year period, using the new 2002 WHO classification and the "second opinion" given by an expert regional pathologist on the initial diagnosis by a local pathologist. A three to five year survival rate will also be determined. Pathology reports and clinical records will be the sources of information.The second study aims to compare the effects on survival or relapse-free period - allowing for histological subtypes, clinical stage, primary site, age and gender - when the disease was treated or not according to the clinical practice guidelines (CPGs). DISCUSSION: Within CONTICANET, each group was asked to design a particular study on a specific objective, the partners of the network being free to accept or not the proposed protocol. The first protocol was accepted by the other researchers, therefore the incidence of sarcoma will be assessed in three European regions, Rhone-Alpes and Aquitaine (France) and Veneto (Italy), where the geographic distribution of sarcoma will be compared after taking into account age and gender. The conformity of the clinical practice with the recommended guidelines will be investigated in a French (Rhone Alps) and Italian (Veneto) region since the CPGs were similar in both areas

    Anti-EGFR Antibody Efficiently and Specifically Inhibits Human TSC2−/− Smooth Muscle Cell Proliferation. Possible Treatment Options for TSC and LAM

    Get PDF
    BACKGROUND: Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2(-/-) ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2(-/-) ASM cell proliferation is EGF-dependent. METHODS AND FINDINGS: Effects of EGF on proliferation of TSC2(-/-) ASM cells and TSC2(-/-) ASM cells transfected with TSC2 gene were determined. In contrast to TSC2(-/-) ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2(-/-) ASM cells. Exposure of TSC2(-/-) ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2(-/-) cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2(-/-) ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2(-/-) ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed. CONCLUSION: Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC(-/-) ASM cells, and such EGF-dependency is the result of the lack of tuberin

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells

    Get PDF
    BACKGROUND: Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. METHODS: Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10(6 )structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. RESULTS: The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. CONCLUSION: Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs

    Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3

    Get PDF
    Tumor suppressor and upstream master kinase Liver kinase B1 (LKB1) plays a significant role in suppressing cancer growth and metastatic progression. We show that low-LKB1 expression significantly correlates with poor survival outcome in breast cancer. In line with this observation, loss-of-LKB1 rendered breast cancer cells highly migratory and invasive, attaining cancer stem cell-like phenotype. Accordingly, LKB1-null breast cancer cells exhibited an increased ability to form mammospheres and elevated expression of pluripotency-factors (Oct4, Nanog and Sox2), properties also observed in spontaneous tumors in Lkb1-/- mice. Conversely, LKB1-overexpression in LKB1-null cells abrogated invasion, migration and mammosphere-formation. Honokiol (HNK), a bioactive molecule from Magnolia grandiflora increased LKB1 expression, inhibited individual cell-motility and abrogated the stem-like phenotype of breast cancer cells by reducing the formation of mammosphere, expression of pluripotency-factors and aldehyde dehydrogenase activity. LKB1, and its substrate, AMP-dependent protein kinase (AMPK) are important for HNK-mediated inhibition of pluripotency factors since LKB1-silencing and AMPK-inhibition abrogated, while LKB1-overexpression and AMPK-activation potentiated HNK's effects. Mechanistic studies showed that HNK inhibited Stat3-phosphorylation/activation in an LKB1-dependent manner, preventing its recruitment to canonical binding-sites in the promoters of Nanog, Oct4 and Sox2. Thus, inhibition of the coactivation-function of Stat3 resulted in suppression of expression of pluripotency factors. Further, we showed that HNK inhibited breast tumorigenesis in mice in an LKB1-dependent manner. Molecular analyses of HNK-treated xenografts corroborated our in vitro mechanistic findings. Collectively, these results present the first in vitro and in vivo evidence to support crosstalk between LKB1, Stat3 and pluripotency factors in breast cancer and effective anticancer modulation of this axis with HNK treatment

    Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism

    Get PDF
    Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies
    corecore