1,714 research outputs found

    Regulatory T Cells and Viral Disease

    Get PDF

    Editorial:What's New in Endocrinology?

    Get PDF

    The Intricate Role of Growth Hormone in Metabolism

    Get PDF
    Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1 (IGF-1). Data from human and rodent studies reveal the importance of GH in insulin synthesis and secretion, lipid metabolism and body fat remodeling. In this review, we will summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets identified to mediate these effects. Furthermore, we will discuss what role GH plays in obesity and present possible mechanisms by which this may occur

    CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy

    Get PDF
    IGF1R-KD significantly reduced the metastatic capacity of CD24+ cells. (A) Representation of lung metastasis following 4 weeks of 10,000 cells inoculation into WT mice tail vein. (B) Average of macrometastasis per lung in each group is displayed in the bar graph. Mann-Whitney test performed to compare the difference between the groups. **P < 0.005. (PPTX 537 kb

    Recombinant canine single chain insulin analogues: Insulin receptor binding capacity and ability to stimulate glucose uptake

    Get PDF
    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs

    Fibronectin glycation increases IGF-I induced proliferation of human aortic smooth muscle cells

    Full text link
    The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.FAPESP, Sao Paulo, Brazil [91/3617-8]FAPESP (Sao Paulo, Brazil

    High-Efficient FLPo Deleter Mice in C57BL/6J Background

    Get PDF
    Conditional gene manipulation in mice becomes a routine for genetic studies of mammalian gene functions. Additional site-specific recombinases such as FLP or φ31 provide one more level of gene manipulation flexibility. The recombination activity of the currently available FLP deleter mice remains low. We generated a new FLP deleter mouse line with the mouse codon-optimized FLPo gene in C57BJ/6 background, which showed superior recombination efficacy in comparison to FLPe deleter mice. 100% complete removal of FRT-flanked Neo cassette was observed in all F1 progeny mice carrying both FLPo and Neo cassette, which can be transmitted to F2 generation independent of FLPo activity. Our new FLPo transgenic mice (on pure C57BJ/6 background) will largely facilitate the gene targeting process and is valuable for conditional gene manipulation
    corecore