190 research outputs found

    Hemodynamic orthostatic dizziness/vertigo: diagnostic criteria

    Get PDF
    This paper presents the diagnostic criteria for hemodynamic orthostatic dizziness/vertigo to be included in the International Classification of Vestibular Disorders (ICVD). The aim of defining diagnostic criteria of hemodynamic orthostatic dizziness/vertigo is to help the clinicians to understand the terminology related to orthostatic dizziness/vertigo and to distinguish orthostatic dizziness/vertigo due to global brain hypoperfusion from that caused by other etiologies. Diagnosis of hemodynamic orthostatic dizziness/vertigo requires: A) one or more episodes of dizziness/vertigo or unsteadiness triggered by arising or present during upright position, which subsides by sitting or lying down; B) orthostatic hypotension, postural tachycardia syndrome or syncope documented on standing or during head-up tilt test; and C) not better accounted for by another disease or disorder. Probable hemodynamic orthostatic dizziness/vertigo is defined as follows: A) at least 5 episodes of dizziness/vertigo or unsteadiness triggered by arising or present during upright position, which subsides by sitting or lying down; B) at least one of the following accompanying symptoms: generalized weakness/tiredness, difficulty of thinking/concentration, blurred vision, and tachycardia/palpitations; and C) not better accounted for by another disease or disorder. These diagnostic criteria have been derived by expert consensus from an extensive review of 90 years of research on hemodynamic orthostatic dizziness/vertigo, postural hypotension or tachycardia, and autonomic dizziness. Measurements of orthostatic blood pressure and heart rate are important for the screening and documentation of orthostatic hypotension or postural tachycardia syndrome to establish the diagnosis of hemodynamic orthostatic dizziness/vertigo

    Protected surface state in stepped Fe (0 18 1)

    Get PDF
    Carbon (C) surface segregation from bulk stabilizes the Fe(0 18 1) vicinal surface by forming a c(3 root 2 x root 2 reconstruction with C zig-zag chains oriented at 45 degrees with respect to the iron surface steps. The iron surface electronic states as measured by high resolution ARPES at normal emission with polarized synchrotron radiation split in two peaks that follow distinct energy dispersion curves. One peak follows the dispersion of the carbon superstructure and is photoexcited only when the polarization vector is parallel to the steps, the second peak disperses similarly to the pristine Fe(0 0 1) surface. Such surface electronic structure is robust as it persists even after coating with an Ag overlayer. The robustness of this surface electronic structure and its similarity with that of the clean Fe(0 0 1) surface make this system of interest for magnetic and spintronic properties such as magneto tunnel junctions based on Fe/MgO interface

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The frequency of metal enrichment of cool helium-atmosphere white dwarfs using the DESI early data release

    Get PDF
    There is an overwhelming evidence that white dwarfs host planetary systems; revealed by the presence, disruption, and accretion of planetary bodies. A lower limit on the frequency of white dwarfs that host planetary material has been estimated to be ≃ 25–50 per cent; inferred from the ongoing or recent accretion of metals on to both hydrogen-atmosphere and warm helium-atmosphere white dwarfs. Now with the unbiased sample of white dwarfs observed by the Dark Energy Spectroscopic Instrument (DESI) survey in their Early Data Release (EDR), we have determined the frequency of metal enrichment around cool-helium atmosphere white dwarfs as 21 ± 3 per cent using a sample of 234 systems. This value is in good agreement with values determined from previous studies. With the current samples we cannot distinguish whether the frequency of planetary accretion varies with system age or host-star mass, but the DESI data release 1 will contain roughly an order of magnitude more white dwarfs than DESI EDR and will allow these parameters to be investigated

    The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: a systematic review and meta-analysis.

    Get PDF
    Moderate correlation exists between the imaging quantification of brain white matter lesions and cognitive performance in people with multiple sclerosis (MS). This may reflect the greater importance of other features, including subvisible pathology, or methodological limitations of the primary literature.To summarise the cognitive clinico-radiological paradox and explore the potential methodological factors that could influence the assessment of this relationship.Systematic review and meta-analysis of primary research relating cognitive function to white matter lesion burden.Fifty papers met eligibility criteria for review, and meta-analysis of overall results was possible in thirty-two (2050 participants). Aggregate correlation between cognition and T2 lesion burden was r = -0.30 (95% confidence interval: -0.34, -0.26). Wide methodological variability was seen, particularly related to key factors in the cognitive data capture and image analysis techniques.Resolving the persistent clinico-radiological paradox will likely require simultaneous evaluation of multiple components of the complex pathology using optimum measurement techniques for both cognitive and MRI feature quantification. We recommend a consensus initiative to support common standards for image analysis in MS, enabling benchmarking while also supporting ongoing innovation

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore