31 research outputs found

    Photon number resolving detection using time-multiplexing

    Full text link
    Detectors that can resolve photon number are needed in many quantum information technologies. In order to be useful in quantum information processing, such detectors should be simple, easy to use, and be scalable to resolve any number of photons, as the application may require great portability such as in quantum cryptography. Here we describe the construction of a time-multiplexed detector, which uses a pair of standard avalanche photodiodes operated in Geiger mode. The detection technique is analysed theoretically and tested experimentally using a pulsed source of weak coherent light.Comment: 20 pages, 14 figures, accepted to Journal of Modern Optic

    Multi-Particle Interferometry Based on Double Entangled States

    Get PDF
    A method for producing a 4-photon entangled state based on the use of two independent pair sources is discussed. Of particular interest is that each of the pair sources produces a two-photon state which is simultaneously entangled in both polarization and space-time variables. Performing certain measurements which exploit this double entanglement provides an opportunity for verifying the recent demonstration of nonlocality by Greenberger, Horne, and Zeilinger

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria

    No full text
    While some organisms, including humans, eliminate oxidized purines to get rid of excess nitrogen, for many others the recovery of the purine ring nitrogen is vital. In the so-called ureide pathway, nitrogen is released as ammonia from allantoate through a series of reactions starting with allantoate amidohydrolase (AAH), a manganese-dependent enzyme found in plants and bacteria. We report NMR evidence that the true product of the AAH reaction is S-ureidoglycine, a nonstandard alpha-amino acid that spontaneously releases ammonia in vitro. Using gene proximity and logical genome analysis, we identified a candidate gene (ylbA) for S-ureidoglycine metabolism. The proteins encoded by Escherichia coli and Arabidopsis thaliana genes catalyze the manganese-dependent release of ammonia through hydrolysis of S-ureidoglycine. Hydrolysis then inverts the configuration and yields S-ureidoglycolate. S-Ureidoglycine aminohydrolase (UGHY) is cytosolic in bacteria, whereas in plants it is localized, like allantoate amidohydrolase, in the endoplasmic reticulum. These findings strengthen the basis for the known sensitivity of the ureide pathway to Mn availability and suggest a further rationale for the active transport of Mn in the endoplasmic reticulum of plant cells
    corecore