124 research outputs found

    A new procedure to measure children's reading speed and accuracy in Italian

    Get PDF
    Impaired readers in primary school should be early recognized, in order to asses a targeted intervention within the school and to start a teaching that respects the difficulties in learning to read, to write and to perform calculations. Screening procedures inside the primary schools aimed at detecting children with difficulties in reading, are of fundamental importance for guaranteeing an early identification of dyslexic children and reducing both the primary negative effects - on learning - and the secondary negative effects - on the development of the personality - of this disturbance. In this study we propose a new screening procedure measuring reading speed and accuracy. This procedure is very fast (it is exactly one minute long), simple, cheap and can be provided by teachers without technical knowledge. On the contrary, most of the currently used diagnostic tests, are about 10 minutes long and must be provided by experts. These two major flaws prevent the widespread use of these tests. On the basis of the results obtained in a survey on about 1500 students attending primary school in Italy, we investigate the relationships between variables used in the screening procedure and variables measuring speed and accuracy in the currently used diagnostic tests in Italy. Then, we analyze the validity of the screening procedure from a statistical point of view and with an explorative factor analysis we show that reading speed and accuracy seem to be two separate symptoms of the dyslexia phenomenon

    Prevention of suicidal behaviour in prisons: an overview of initiatives based on a systematic review of research on near-lethal suicide attempts

    Get PDF
    Background: Worldwide, prisoners are at high risk of suicide. Research on near-lethal suicide attempts can provide important insights into risk and protective factors, and inform suicide prevention initiatives in prison. Aims: To synthesize findings of research on near-lethal attempts in prisons, and consider their implications for suicide prevention policies and practice, in the context of other research in custody and other settings. Method: We searched two bibliographic indexes for studies in any language on near-lethal and severe self-harm in prisoners, supplemented by targeted searches over the period 2000–2014. We extracted information on risk factors descriptively. Data were not meta-analyzed owing to heterogeneity of samples and methods. Results: We identified eight studies reporting associations between prisoner near-lethal attempts and specific factors. The latter included historical, prison-related, and clinical factors, including psychiatric morbidity and comorbidity, trauma, social isolation, and bullying. These factors were also identified as important in prisoners' own accounts of what may have contributed to their attempts (presented in four studies). Conclusion: Factors associated with prisoners' severe suicide attempts include a range of potentially modifiable clinical, psychosocial, and environmental factors. We make recommendations to address these factors in order to improve detection, management, and prevention of suicide risk in prisoners

    Family social environment in childhood and self-rated health in young adulthood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family social support, as a form of social capital, contributes to social health disparities at different age of life. In a life-course epidemiological perspective, the aims of our study were to examine the association between self-reported family social environment during childhood and self-reported health in young adulthood and to assess the role of family functioning during childhood as a potential mediating factor in explaining the association between family breakup in childhood and self-reported health in young adulthood.</p> <p>Methods</p> <p>We analyzed data from the first wave of the Health, Inequalities and Social Ruptures Survey (SIRS), a longitudinal health and socio-epidemiological survey of a random sample of 3000 households initiated in the Paris metropolitan area in 2005. Sample-weighted logistic regression analyses were performed to determine the association between the quality of family social environment in childhood and self-rated health (overall health, physical health and psychological well-being) in young adults (n = 1006). We used structural equation model to explore the mediating role of the quality of family functioning in childhood in the association between family breakup in childhood and self-rated health in young adulthood.</p> <p>Results</p> <p>The multivariate results support an association between a negative family social environment in childhood and poor self-perceived health in adulthood. The association found between parental separation or divorce in childhood and poor self-perceived health in adulthood was mediated by parent-child relationships and by having witnessed interparental violence during childhood.</p> <p>Conclusion</p> <p>These results argue for interventions that enhance family cohesion, particularly after family disruptions during childhood, to promote health in young adulthood.</p

    Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system.</p> <p>Methods</p> <p>We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data.</p> <p>Results</p> <p>We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct <it>in silico </it>experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine.</p> <p>Conclusions</p> <p>Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.</p

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesβ€”including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)β€”in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Translational rodent models for research on parasitic protozoa – a review of confounders and possibilities

    Get PDF
    Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk).We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Preemption and Choice-of-Law Coordination

    No full text
    • …
    corecore