4,642 research outputs found

    Two-Player Reachability-Price Games on Single-Clock Timed Automata

    Full text link
    We study two player reachability-price games on single-clock timed automata. The problem is as follows: given a state of the automaton, determine whether the first player can guarantee reaching one of the designated goal locations. If a goal location can be reached then we also want to compute the optimum price of doing so. Our contribution is twofold. First, we develop a theory of cost functions, which provide a comprehensive methodology for the analysis of this problem. This theory allows us to establish our second contribution, an EXPTIME algorithm for computing the optimum reachability price, which improves the existing 3EXPTIME upper bound.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Examples of CM curves of genus two defined over the reflex field

    Full text link
    In "Proving that a genus 2 curve has complex multiplication", van Wamelen lists 19 curves of genus two over Q\mathbf{Q} with complex multiplication (CM). For each of the 19 curves, the CM-field turns out to be cyclic Galois over Q\mathbf{Q}. The generic case of non-Galois quartic CM-fields did not feature in this list, as the field of definition in that case always contains a real quadratic field, known as the real quadratic subfield of the reflex field. We extend van Wamelen's list to include curves of genus two defined over this real quadratic field. Our list therefore contains the smallest "generic" examples of CM curves of genus two. We explain our methods for obtaining this list, including a new height-reduction algorithm for arbitrary hyperelliptic curves over totally real number fields. Unlike Van Wamelen, we also give a proof of our list, which is made possible by our implementation of denominator bounds of Lauter and Viray for Igusa class polynomials.Comment: 31 pages; Updated some reference

    Fast algorithms for handling diagonal constraints in timed automata

    Full text link
    A popular method for solving reachability in timed automata proceeds by enumerating reachable sets of valuations represented as zones. A na\"ive enumeration of zones does not terminate. Various termination mechanisms have been studied over the years. Coming up with efficient termination mechanisms has been remarkably more challenging when the automaton has diagonal constraints in guards. In this paper, we propose a new termination mechanism for timed automata with diagonal constraints based on a new simulation relation between zones. Experiments with an implementation of this simulation show significant gains over existing methods.Comment: Shorter version of this article to appear in CAV 201

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201

    Optimal Reachability in Divergent Weighted Timed Games

    Full text link
    Weighted timed games are played by two players on a timed automaton equipped with weights: one player wants to minimise the accumulated weight while reaching a target, while the other has an opposite objective. Used in a reactive synthesis perspective, this quantitative extension of timed games allows one to measure the quality of controllers. Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to non-negative weights. Decidability results exist for subclasses of one-clock games, and for a subclass with non-negative weights defined by a semantical restriction on the weights of cycles. In this work, we introduce the class of divergent weighted timed games as a generalisation of this semantical restriction to arbitrary weights. We show how to compute their optimal value, yielding the first decidable class of weighted timed games with negative weights and an arbitrary number of clocks. In addition, we prove that divergence can be decided in polynomial space. Last, we prove that for untimed games, this restriction yields a class of games for which the value can be computed in polynomial time

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    The Optimization of a Novel Prismatic Drive

    Get PDF
    The design of a mechanical transmission taking into account the transmitted forces is reported in this paper. This transmission is based on Slide-o-Cam, a cam mechanism with multiple rollers mounted on a common translating follower. The design of Slide-o-Cam, a transmission intended to produce a sliding motion from a turning drive, or vice versa, was reported elsewhere. This transmission provides pure-rolling motion, thereby reducing the friction of rack-and-pinions and linear drives. The pressure angle is a relevant performance index for this transmission because it determines the amount of force transmitted to the load vs. that transmitted to the machine frame. To assess the transmission capability of the mechanism, the Hertz formula is introduced to calculate the stresses on the rollers and on the cams. The final transmission is intended to replace the current ball-screws in the Orthoglide, a three-DOF parallel robot for the production of translational motions, currently under development for machining applications at Ecole Centrale de Nantes
    • …
    corecore