472 research outputs found

    Tracing the genetic impact of farmed turbot <i>Scophthalmus maximus</i> on wild populations

    Get PDF
    The impact of escapees from aquaculture is of general concern for the sustainability of natural resources. Turbot Scophthalmus maximus is a marine flatfish of great commercial value whose land-based aquaculture started approx. 40 yr ago; hence, a low impact of escapees is expected on wild populations. However, enhancement of wild stocks using farmed turbot has been carried out along the Northeast Atlantic coasts in the last decades. Recently, a broad panel of single nucleotide polymorphism (SNP) markers (755 SNPs; 1 SNP Mb-1) has been used to evaluate the genetic structure of turbot throughout its distribution range, constituting the baseline to evaluate the impact of farmed fish in the wild. Two distinct origins were identified for farmed turbot (F_ORI1 and F_ORI2; FST = 0.049), which differentiated from wild populations after 5 generations of selection (average FST = 0.059), and consistent evidence of adaptation to domestication was detected. A notable proportion of fish of farmed ancestry was detected in the wild (15.5%), mainly in the North Sea, where restocking activities have taken place, determining genetic introgression in wild populations. Conversely, effects of land-based aquaculture appear negligible. A simulation exercise supported panels of 40 and 80 SNPs to identify fishes of F_ORI1 and F_ORI2 ancestry in the wild, respectively. Application to empirical data showed an assignment success (wild/farmed ancestry) of approx. 95% in comparison with the full SNP dataset. The SNP tools will be useful to monitor turbot of farmed ancestry in the wild, which might represent a risk, considering the lower fitness of farmed individuals

    B cell–adaptive immune profile in emphysema-predominant chronic obstructive pulmonary disease

    Get PDF
    Cigarette smoke, the major risk factor for COPD in developed countries, causes pulmonary inflammation that persists long after smoking cessation, suggesting self-perpetuating adaptive immune responses similar to those that occur in autoimmune diseases. Increases in the number and size of B cell–rich lymphoid follicles (LFs) have been shown in patients in severe stages of COPD (4), and increased B-cell products (autoantibodies) have been observed in the blood and lungs of patients with COPD (5, 6). Oligoclonal rearrangement of the immunoglobulin genes has been observed in B cells isolated from COPD LFs, suggesting that a specific antigenic stimulation drives B-cell proliferation. Consistently, we have shown that in the COPD lung, there is an overexpression of BAFF (B-cell activation factor of the TNF family), which is a key regulator of B-cell homeostasis in several autoimmune diseases (7) and is involved in the growth of LFs in COPD. However, a network analysis of lung transcriptomics showed that a prominent B-cell molecular signature characterized emphysema preferentially but was absent in AD independently of the degree of airflow limitation (8). In the current study, we investigated the correlation between B-cell responses in lung tissue from patients with COPD and healthy smokers, and the extent of emphysema versus airflow limitation

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    American thoracic society/national heart, lung, and blood institute asthma-chronic obstructive pulmonary disease overlap workshop report

    Get PDF
    Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent chronic obstructive lung diseases with an associated high burden of disease. Asthma, which is often allergic in origin, frequently begins in infancy or childhood with variable airflow obstruction and intermittent wheezing, cough, and dyspnea. Patients with COPD, in contrast, are usually current or former smokers who present after the age of 40 years with symptoms (often persistent) including dyspnea and a productive cough. On the basis of age and smoking history, it is often easy to distinguish between asthma andCOPD. However, some patients have features compatible with both diseases. Because clinical studies typically exclude these patients, their underlying disease mechanisms and appropriate treatment remain largely uncertain. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the American Thoracic Society, convened a workshop of investigators in San Francisco, California on May 14, 2016. At the workshop, current understanding of asthma-COPD overlap was discussed among clinicians, pathologists, radiologists, epidemiologists, and investigators with expertise in asthma and COPD. They considered knowledge gaps in our understanding of asthma-COPD overlap and identified strategies and research priorities that will advance its understanding. This report summarizes those discussions

    Transitions of cardio-metabolic risk factors in the Americas between 1980 and 2014

    Get PDF
    Describing the prevalence and trends of cardiometabolic risk factors that are associated with non-communicable diseases (NCDs) is crucial for monitoring progress, planning prevention, and providing evidence to support policy efforts. We aimed to analyse the transition in body-mass index (BMI), obesity, blood pressure, raised blood pressure, and diabetes in the Americas, between 1980 and 2014

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
    corecore