45 research outputs found

    Directing the Aggregation of Native Polythiophene during in Situ Polymerization

    Get PDF
    The performance of semiconducting polymers strongly depends on their intra- and intermolecular electronic interactions. Therefore, the morphology and particularly crystallinity and crystal structure play a crucial role in enabling a sufficient overlap between the orbitals of neighboring polymers. A new solution-based in situ polymerization for the fabrication of native polythiophene thin films is presented, which exploits the film formation process to influence the polymer crystal structure in the resulting thin films. The synthesis of the insoluble polythiophene is based on an oxidative reaction in which the oxidizing agent, iron(III) p-toluenesulfonate (FeTos), initially oxidizes the monomers to enable the polymer chain growth and secondly the final polymers, thereby chemically doping the polythiophene. To exploit the fact that the doped polythiophene has a different crystal packing structure compared to the undoped polythiophene, we investigate the structural effect of this inherent doping process by varying the amounts of FeTos in the reaction mixture, creating polythiophene thin films with different degrees of doping. The structural investigation performed by means of grazing incidence wide-angle X-ray scattering (GIWAXS) suggests that the strongly doped polymer chains aggregate in a ππ-stacked manner in the film formation process. Moreover, this π-stacking can be maintained after the removal of the dopant molecules. GIWAXS measurements, molecular dynamics simulations, and spectroscopic analysis suggest the presence of polythiophene in a novel and stable crystal structure with an enhanced intermolecular interaction

    Measures implemented in the school setting to contain the COVID-19 pandemic: a scoping review.

    Get PDF
    BACKGROUND: In response to the spread of SARS-CoV-2 and the impact of COVID-19, national and subnational governments implemented a variety of measures in order to control the spread of the virus and the associated disease. While these measures were imposed with the intention of controlling the pandemic, they were also associated with severe psychosocial, societal, and economic implications on a societal level. One setting affected heavily by these measures is the school setting. By mid-April 2020, 192 countries had closed schools, affecting more than 90% of the world's student population. In consideration of the adverse consequences of school closures, many countries around the world reopened their schools in the months after the initial closures. To safely reopen schools and keep them open, governments implemented a broad range of measures. The evidence with regards to these measures, however, is heterogeneous, with a multitude of study designs, populations, settings, interventions and outcomes being assessed. To make sense of this heterogeneity, we conducted a rapid scoping review (8 October to 5 November 2020). This rapid scoping review is intended to serve as a precursor to a systematic review of effectiveness, which will inform guidelines issued by the World Health Organization (WHO). This review is reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist and was registered with the Open Science Framework. OBJECTIVES: To identify and comprehensively map the evidence assessing the impacts of measures implemented in the school setting to reopen schools, or keep schools open, or both, during the SARS-CoV-2/COVID-19 pandemic, with particular focus on the types of measures implemented in different school settings, the outcomes used to measure their impacts and the study types used to assess these. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, the CDC COVID-19 Research Articles Downloadable Database for preprints, and the WHO COVID-19 Global literature on coronavirus disease on 8 October 2020. SELECTION CRITERIA: We included studies that assessed the impact of measures implemented in the school setting. Eligible populations were populations at risk of becoming infected with SARS-CoV-2, or developing COVID-19 disease, or both, and included people both directly and indirectly impacted by interventions, including students, teachers, other school staff, and contacts of these groups, as well as the broader community. We considered all types of empirical studies, which quantitatively assessed impact including epidemiological studies, modelling studies, mixed-methods studies, and diagnostic studies that assessed the impact of relevant interventions beyond diagnostic test accuracy. Broad outcome categories of interest included infectious disease transmission-related outcomes, other harmful or beneficial health-related outcomes, and societal, economic, and ecological implications. DATA COLLECTION AND ANALYSIS: We extracted data from included studies in a standardized manner, and mapped them to categories within our a priori logic model where possible. Where not possible, we inductively developed new categories. In line with standard expectations for scoping reviews, the review provides an overview of the existing evidence regardless of methodological quality or risk of bias, and was not designed to synthesize effectiveness data, assess risk of bias, or characterize strength of evidence (GRADE). MAIN RESULTS: We included 42 studies that assessed measures implemented in the school setting. The majority of studies used mathematical modelling designs (n = 31), while nine studies used observational designs, and two studies used experimental or quasi-experimental designs. Studies conducted in real-world contexts or using real data focused on the WHO European region (EUR; n = 20), the WHO region of the Americas (AMR; n = 13), the West Pacific region (WPR; n = 6), and the WHO Eastern Mediterranean Region (EMR; n = 1). One study conducted a global assessment and one did not report on data from, or that were applicable to, a specific country. Three broad intervention categories emerged from the included studies: organizational measures to reduce transmission of SARS-CoV-2 (n = 36), structural/environmental measures to reduce transmission of SARS-CoV-2 (n = 11), and surveillance and response measures to detect SARS-CoV-2 infections (n = 19). Most studies assessed SARS-CoV-2 transmission-related outcomes (n = 29), while others assessed healthcare utilization (n = 8), other health outcomes (n = 3), and societal, economic, and ecological outcomes (n = 5). Studies assessed both harmful and beneficial outcomes across all outcome categories. AUTHORS' CONCLUSIONS: We identified a heterogeneous and complex evidence base of measures implemented in the school setting. This review is an important first step in understanding the available evidence and will inform the development of rapid reviews on this topic

    International travel-related control measures to contain the COVID-19 pandemic: a rapid review

    Get PDF
    BACKGROUND: In late 2019, the first cases of coronavirus disease 2019 (COVID‐19) were reported in Wuhan, China, followed by a worldwide spread. Numerous countries have implemented control measures related to international travel, including border closures, travel restrictions, screening at borders, and quarantine of travellers. OBJECTIVES: To assess the effectiveness of international travel‐related control measures during the COVID‐19 pandemic on infectious disease transmission and screening‐related outcomes. SEARCH METHODS: We searched MEDLINE, Embase and COVID‐19‐specific databases, including the Cochrane COVID‐19 Study Register and the WHO Global Database on COVID‐19 Research to 13 November 2020. SELECTION CRITERIA: We considered experimental, quasi‐experimental, observational and modelling studies assessing the effects of travel‐related control measures affecting human travel across international borders during the COVID‐19 pandemic. In the original review, we also considered evidence on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). In this version we decided to focus on COVID‐19 evidence only. Primary outcome categories were (i) cases avoided, (ii) cases detected, and (iii) a shift in epidemic development. Secondary outcomes were other infectious disease transmission outcomes, healthcare utilisation, resource requirements and adverse effects if identified in studies assessing at least one primary outcome. DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles and abstracts and subsequently full texts. For studies included in the analysis, one review author extracted data and appraised the study. At least one additional review author checked for correctness of data. To assess the risk of bias and quality of included studies, we used the Quality Assessment of Diagnostic Accuracy Studies (QUADAS‐2) tool for observational studies concerned with screening, and a bespoke tool for modelling studies. We synthesised findings narratively. One review author assessed the certainty of evidence with GRADE, and several review authors discussed these GRADE judgements. MAIN RESULTS: Overall, we included 62 unique studies in the analysis; 49 were modelling studies and 13 were observational studies. Studies covered a variety of settings and levels of community transmission. Most studies compared travel‐related control measures against a counterfactual scenario in which the measure was not implemented. However, some modelling studies described additional comparator scenarios, such as different levels of stringency of the measures (including relaxation of restrictions), or a combination of measures. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to the selection of travellers and the reference test, and unclear reporting of certain methodological aspects. Below we outline the results for each intervention category by illustrating the findings from selected outcomes. Travel restrictions reducing or stopping cross‐border travel (31 modelling studies) The studies assessed cases avoided and shift in epidemic development. We found very low‐certainty evidence for a reduction in COVID‐19 cases in the community (13 studies) and cases exported or imported (9 studies). Most studies reported positive effects, with effect sizes varying widely; only a few studies showed no effect. There was very low‐certainty evidence that cross‐border travel controls can slow the spread of COVID‐19. Most studies predicted positive effects, however, results from individual studies varied from a delay of less than one day to a delay of 85 days; very few studies predicted no effect of the measure. Screening at borders (13 modelling studies; 13 observational studies) Screening measures covered symptom/exposure‐based screening or test‐based screening (commonly specifying polymerase chain reaction (PCR) testing), or both, before departure or upon or within a few days of arrival. Studies assessed cases avoided, shift in epidemic development and cases detected. Studies generally predicted or observed some benefit from screening at borders, however these varied widely. For symptom/exposure‐based screening, one modelling study reported that global implementation of screening measures would reduce the number of cases exported per day from another country by 82% (95% confidence interval (CI) 72% to 95%) (moderate‐certainty evidence). Four modelling studies predicted delays in epidemic development, although there was wide variation in the results between the studies (very low‐certainty evidence). Four modelling studies predicted that the proportion of cases detected would range from 1% to 53% (very low‐certainty evidence). Nine observational studies observed the detected proportion to range from 0% to 100% (very low‐certainty evidence), although all but one study observed this proportion to be less than 54%. For test‐based screening, one modelling study provided very low‐certainty evidence for the number of cases avoided. It reported that testing travellers reduced imported or exported cases as well as secondary cases. Five observational studies observed that the proportion of cases detected varied from 58% to 90% (very low‐certainty evidence). Quarantine (12 modelling studies) The studies assessed cases avoided, shift in epidemic development and cases detected. All studies suggested some benefit of quarantine, however the magnitude of the effect ranged from small to large across the different outcomes (very low‐ to low‐certainty evidence). Three modelling studies predicted that the reduction in the number of cases in the community ranged from 450 to over 64,000 fewer cases (very low‐certainty evidence). The variation in effect was possibly related to the duration of quarantine and compliance. Quarantine and screening at borders (7 modelling studies; 4 observational studies) The studies assessed shift in epidemic development and cases detected. Most studies predicted positive effects for the combined measures with varying magnitudes (very low‐ to low‐certainty evidence). Four observational studies observed that the proportion of cases detected for quarantine and screening at borders ranged from 68% to 92% (low‐certainty evidence). The variation may depend on how the measures were combined, including the length of the quarantine period and days when the test was conducted in quarantine. AUTHORS' CONCLUSIONS: With much of the evidence derived from modelling studies, notably for travel restrictions reducing or stopping cross‐border travel and quarantine of travellers, there is a lack of 'real‐world' evidence. The certainty of the evidence for most travel‐related control measures and outcomes is very low and the true effects are likely to be substantially different from those reported here. Broadly, travel restrictions may limit the spread of disease across national borders. Symptom/exposure‐based screening measures at borders on their own are likely not effective; PCR testing at borders as a screening measure likely detects more cases than symptom/exposure‐based screening at borders, although if performed only upon arrival this will likely also miss a meaningful proportion of cases. Quarantine, based on a sufficiently long quarantine period and high compliance is likely to largely avoid further transmission from travellers. Combining quarantine with PCR testing at borders will likely improve effectiveness. Many studies suggest that effects depend on factors, such as levels of community transmission, travel volumes and duration, other public health measures in place, and the exact specification and timing of the measure. Future research should be better reported, employ a range of designs beyond modelling and assess potential benefits and harms of the travel‐related control measures from a societal perspective

    Measures implemented in the school setting to contain the COVID-19 pandemic

    Get PDF
    BACKGROUND: In response to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the impact of coronavirus disease 2019 (COVID-19), governments have implemented a variety of measures to control the spread of the virus and the associated disease. Among these, have been measures to control the pandemic in primary and secondary school settings. OBJECTIVES: To assess the effectiveness of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic, with particular focus on the different types of measures implemented in school settings and the outcomes used to measure their impacts on transmission-related outcomes, healthcare utilisation outcomes, other health outcomes as well as societal, economic, and ecological outcomes.  SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and the Educational Resources Information Center, as well as COVID-19-specific databases, including the Cochrane COVID-19 Study Register and the WHO COVID-19 Global literature on coronavirus disease (indexing preprints) on 9 December 2020. We conducted backward-citation searches with existing reviews. SELECTION CRITERIA: We considered experimental (i.e. randomised controlled trials; RCTs), quasi-experimental, observational and modelling studies assessing the effects of measures implemented in the school setting to safely reopen schools, or keep schools open, or both, during the COVID-19 pandemic. Outcome categories were (i) transmission-related outcomes (e.g. number or proportion of cases); (ii) healthcare utilisation outcomes (e.g. number or proportion of hospitalisations); (iii) other health outcomes (e.g. physical, social and mental health); and (iv) societal, economic and ecological outcomes (e.g. costs, human resources and education). We considered studies that included any population at risk of becoming infected with SARS-CoV-2 and/or developing COVID-19 disease including students, teachers, other school staff, or members of the wider community.  DATA COLLECTION AND ANALYSIS: Two review authors independently screened titles, abstracts and full texts. One review author extracted data and critically appraised each study. One additional review author validated the extracted data. To critically appraise included studies, we used the ROBINS-I tool for quasi-experimental and observational studies, the QUADAS-2 tool for observational screening studies, and a bespoke tool for modelling studies. We synthesised findings narratively. Three review authors made an initial assessment of the certainty of evidence with GRADE, and several review authors discussed and agreed on the ratings. MAIN RESULTS: We included 38 unique studies in the analysis, comprising 33 modelling studies, three observational studies, one quasi-experimental and one experimental study with modelling components. Measures fell into four broad categories: (i) measures reducing the opportunity for contacts; (ii) measures making contacts safer; (iii) surveillance and response measures; and (iv) multicomponent measures. As comparators, we encountered the operation of schools with no measures in place, less intense measures in place, single versus multicomponent measures in place, or closure of schools. Across all intervention categories and all study designs, very low- to low-certainty evidence ratings limit our confidence in the findings. Concerns with the quality of modelling studies related to potentially inappropriate assumptions about the model structure and input parameters, and an inadequate assessment of model uncertainty. Concerns with risk of bias in observational studies related to deviations from intended interventions or missing data. Across all categories, few studies reported on implementation or described how measures were implemented. Where we describe effects as 'positive', the direction of the point estimate of the effect favours the intervention(s); 'negative' effects do not favour the intervention.  We found 23 modelling studies assessing measures reducing the opportunity for contacts (i.e. alternating attendance, reduced class size). Most of these studies assessed transmission and healthcare utilisation outcomes, and all of these studies showed a reduction in transmission (e.g. a reduction in the number or proportion of cases, reproduction number) and healthcare utilisation (i.e. fewer hospitalisations) and mixed or negative effects on societal, economic and ecological outcomes (i.e. fewer number of days spent in school). We identified 11 modelling studies and two observational studies assessing measures making contacts safer (i.e. mask wearing, cleaning, handwashing, ventilation). Five studies assessed the impact of combined measures to make contacts safer. They assessed transmission-related, healthcare utilisation, other health, and societal, economic and ecological outcomes. Most of these studies showed a reduction in transmission, and a reduction in hospitalisations; however, studies showed mixed or negative effects on societal, economic and ecological outcomes (i.e. fewer number of days spent in school). We identified 13 modelling studies and one observational study assessing surveillance and response measures, including testing and isolation, and symptomatic screening and isolation. Twelve studies focused on mass testing and isolation measures, while two looked specifically at symptom-based screening and isolation. Outcomes included transmission, healthcare utilisation, other health, and societal, economic and ecological outcomes. Most of these studies showed effects in favour of the intervention in terms of reductions in transmission and hospitalisations, however some showed mixed or negative effects on societal, economic and ecological outcomes (e.g. fewer number of days spent in school). We found three studies that reported outcomes relating to multicomponent measures, where it was not possible to disaggregate the effects of each individual intervention, including one modelling, one observational and one quasi-experimental study. These studies employed interventions, such as physical distancing, modification of school activities, testing, and exemption of high-risk students, using measures such as hand hygiene and mask wearing. Most of these studies showed a reduction in transmission, however some showed mixed or no effects.   As the majority of studies included in the review were modelling studies, there was a lack of empirical, real-world data, which meant that there were very little data on the actual implementation of interventions. AUTHORS' CONCLUSIONS: Our review suggests that a broad range of measures implemented in the school setting can have positive impacts on the transmission of SARS-CoV-2, and on healthcare utilisation outcomes related to COVID-19. The certainty of the evidence for most intervention-outcome combinations is very low, and the true effects of these measures are likely to be substantially different from those reported here. Measures implemented in the school setting may limit the number or proportion of cases and deaths, and may delay the progression of the pandemic. However, they may also lead to negative unintended consequences, such as fewer days spent in school (beyond those intended by the intervention). Further, most studies assessed the effects of a combination of interventions, which could not be disentangled to estimate their specific effects. Studies assessing measures to reduce contacts and to make contacts safer consistently predicted positive effects on transmission and healthcare utilisation, but may reduce the number of days students spent at school. Studies assessing surveillance and response measures predicted reductions in hospitalisations and school days missed due to infection or quarantine, however, there was mixed evidence on resources needed for surveillance. Evidence on multicomponent measures was mixed, mostly due to comparators. The magnitude of effects depends on multiple factors. New studies published since the original search date might heavily influence the overall conclusions and interpretation of findings for this review

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio : a pooled analysis of 458 population-based studies in Asian and Western countries

    Get PDF
    Background: Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease, multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and nonHDL cholesterol and the total-to-HDL cholesterol ratio in Asian and Western countries. Methods: We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol and mean total-to-HDL cholesterol ratio by country, sex and age group. Results: Since similar to 1980, mean TC increased in Asian countries. In Japan and South Korea, the TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, at similar to 0.4 mmol/L per decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as similar to 0.7 per decade in Swiss men (equivalent to similar to 26% decline in coronary heart disease risk per decade). The ratio increased in China. Conclusions: HDL cholesterol has risen and the total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only a weak correlation with changes in TC or non-HDL cholesterol.Peer reviewe
    corecore