161 research outputs found

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    Get PDF
    . Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. applications

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The personal and contextual contributors to school belongingness among primary school students

    Get PDF
    School belongingness has gained currency among educators and school health professionals as an important determinant of adolescent health. The current cross-sectional study presents the 15 most significant personal and contextual factors that collectively explain 66.4% (two-thirds) of the variability in 12-year old students' perceptions of belongingness in primary school. The study is part of a larger longitudinal study investigating the factors associated with student adjustment in the transition from primary to secondary school. The study found that girls and students with disabilities had higher school belongingness scores than boys, and their typically developing counterparts respectively; and explained 2.5% of the variability in school belongingness. The majority (47.1% out of 66.4%) of the variability in school belongingness was explained by student personal factors, such as social acceptance, physical appearance competence, coping skills, and social affiliation motivation; followed by parental expectations (3% out of 66.4%), and school-based factors (13.9% out of 66.4%) such as, classroom involvement, task-goal structure, autonomy provision, cultural pluralism, and absence of bullying. Each of the identified contributors of primary school belongingness can be shaped through interventions, system changes, or policy reforms

    Frequency-dependent selection in vaccine-associated pneumococcal population dynamics

    Get PDF
    Many bacterial species are composed of multiple lineages distinguished by extensive variation in gene content. These often cocirculate in the same habitat, but the evolutionary and ecological processes that shape these complex populations are poorly understood. Addressing these questions is particularly important for Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen, because the changes in population structure associated with the recent introduction of partial-coverage vaccines have substantially reduced pneumococcal disease. Here we show that pneumococcal lineages from multiple populations each have a distinct combination of intermediate-frequency genes. Functional analysis suggested that these loci may be subject to negative frequency-dependent selection (NFDS) through interactions with other bacteria, hosts or mobile elements. Correspondingly, these genes had similar frequencies in four populations with dissimilar lineage compositions. These frequencies were maintained following substantial alterations in lineage prevalences once vaccination programmes began. Fitting a multilocus NFDS model of post-vaccine population dynamics to three genomic datasets using Approximate Bayesian Computation generated reproducible estimates of the influence of NFDS on pneumococcal evolution, the strength of which varied between loci. Simulations replicated the stable frequency of lineages unperturbed by vaccination, patterns of serotype switching and clonal replacement. This framework highlights how bacterial ecology affects the impact of clinical interventions.Accessory loci are shown to have similar frequencies in diverse Streptococcus pneumoniae populations, suggesting negative frequency-dependent selection drives post-vaccination population restructuring

    Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    Get PDF
    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity

    A Candidate Approach Implicates the Secreted Salmonella Effector Protein SpvB in P-Body Disassembly

    Get PDF
    P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function

    Reward and Punishment Sensitivity in Children with ADHD: Validating the Sensitivity to Punishment and Sensitivity to Reward Questionnaire for Children (SPSRQ-C)

    Get PDF
    This study validates the Sensitivity to Punishment and Sensitivity to Reward Questionnaire for children (SPSRQ-C), using a Dutch sample of 1234 children between 6–13 years old. Factor analysis determined that a 4-factor and a 5-factor solution were best fitting, explaining 41% and 50% of the variance respectively. The 4-factor model was highly similar to the original SPSRQ factors found in adults (Punishment Sensitivity, Reward Responsivity, Impulsivity/Fun-Seeking, and Drive). The 5-factor model was similar to the 4-factor model, with the exception of a subdivision of the Punishment Sensitivity factor into a factor with ‘social-fear’ items and a factor with ‘anxiety’ items. To determine external validity, scores of three groups of children with attention deficit hyperactivity disorder (ADHD) were compared on the EFA models: ADHD-only (n = 34), ADHD and autism spectrum disorder (ADHD+ASD; n = 22), ADHD and oppositional defiant disorder (ADHD+ODD; n = 22). All ADHD groups scored higher than typical controls on Reward Responsivity and on the ‘anxiety’ factor (n = 75). The ADHD-only and ADHD+ODD group scored higher than other groups on Impulsivity/Fun-Seeking and Drive, while the ADHD+ASD group scored higher on Punishment Sensitivity. The findings emphasize the value of the SPSRQ-C to quickly and reliably assess a child’s sensitivity to reinforcement, with the aim to provide individually-tailored behavioral interventions that utilize reward and reprimands

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life

    Predicted Benign and Synonymous Variants in CYP11A1 Cause Primary Adrenal Insufficiency Through Missplicing.

    Get PDF
    Primary adrenal insufficiency (PAI) is a potentially life-threatening condition that can present with nonspecific features and can be difficult to diagnose. We undertook next generation sequencing in a cohort of children and young adults with PAI of unknown etiology from around the world and identified a heterozygous missense variant (rs6161, c.940G>A, p.Glu314Lys) in CYP11A1 in 19 individuals from 13 different families (allele frequency within undiagnosed PAI in our cohort, 0.102 vs 0.0026 in the Genome Aggregation Database; P A, Thr330 = ; c.1173C>T, Ser391 =). Although p.Glu314Lys is predicted to be benign and showed no loss-of-function in an Escherichia coli assay system, in silico and in vitro studies revealed that the rs6161/c.940G>A variant, plus the c.990G>A and c.1173C>T changes, affected splicing and that p.Glu314Lys produces a nonfunctional protein in mammalian cells. Taken together, these findings show that compound heterozygosity involving a relatively common and predicted "benign" variant in CYP11A1 is a major contributor to PAI of unknown etiology, especially in European populations. These observations have implications for personalized management and demonstrate how variants that might be overlooked in standard analyses can be pathogenic when combined with other very rare disruptive changes.Medical Research Council UK Project (grant MR/K020455/1 to L.A.M.).J.C.A. is a Wellcome Trust Senior Research Fellow in Clinical Science (grants 098513/Z/12/Z and 209328/Z/17/Z) with research support from Great Ormond Street Hospital Children’s Charity (grant V2518) and the National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Centre (grant IS-BRC-1215-20012).Funding also included support from The Mater Medical Research Institute (to M.H.) and National Institutes of Health (grant R01GM086596 to R.J.A.)
    corecore