87 research outputs found

    EDIFY (Eating disorders: delineating illness and recovery trajectories to inform personalised prevention and early intervention in young people):Project outline

    Get PDF
    EDIFY (Eating Disorders: Delineating Illness and Recovery Trajectories to Inform Personalised Prevention and Early Intervention in Young People) is an ambitious research project aiming to revolutionise how eating disorders are perceived, prevented and treated. Six integrated workstreams will address key questions, including: What are young people's experiences of eating disorders and recovery? What are the unique and shared risk factors in different groups? What helps or hinders recovery? How do the brain and behaviour change from early- to later-stage illness? How can we intervene earlier, quicker and in a more personalised way? This 4-year project, involving over 1000 participants, integrates arts, design and humanities with advanced neurobiological, psychosocial and bioinformatics approaches. Young people with lived experience of eating disorders are at the heart of EDIFY, serving as advisors and co-producers throughout. Ultimately, this work will expand public and professional perceptions of eating disorders, uplift under-represented voices and stimulate much-needed advances in policy and practice

    Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia

    Get PDF
    Paleomagnetic studies of the 91 Ma Ecstall pluton and other Cretaceous plutons of British Columbia imply large northward tectonic movements (>2000 km) may have occurred during the tectonic evolution of western North America. However, more recent studies have shown that the eastern edge of the Ecstall pluton experienced considerable mineralogical changes as younger Eocene plutons, such as the ∼58 Ma Quottoon Pluton, were emplaced along its margins. We investigated changes in the rock magnetic properties associated with this reheating event by examining isolated grains of intergrown ilmenite and hematite, the primary paleomagnetic recorder in the Ecstall pluton. Measurements of hysteresis properties, low-temperature remanence, and room temperature isothermal remanent magnetization acquisition and observations from magnetic force microscopy and off-axis electron holography indicate that samples fall into three groups. The groups are defined by the presence of mineral microstructures that are related to distance from the Quotoon plutonic complex. The two groups closest to the Quottoon Pluton contain magnetite within hematite and ilmenite lamellae. Reheating of the Ecstall pluton led to an increase in coercivity and magnetization, as well as to development of mixed phase hysteresis. These results indicate that shallow paleomagnetic directions from the western Ecstall pluton are not affected by reheating and are therefore likely to record original field conditions at the time of pluton emplacement. In the absence of structural deformation, these shallow inclinations are consistent with large-scale northward translation suggested by the Baja–British Columbia hypothesis

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    Biogeographical patterns and speciation of the genus Pinguicula (Lentibulariaceae) inferred by phylogenetic analyses

    Get PDF
    Earlier phylogenetic studies in the genus Pinguicua (Lentibulariaceae) suggested that the species within a geographical region was rather monophyletic, although the sampling was limited or was restricted to specific regions. Those results conflicted with the floral morphology-based classification, which has been widely accepted to date. In the current study, one nuclear ribosomal DNA (internal transcribed spacer; ITS) and two regions of chloroplast DNA (matK and rpl32-trnL), from up to ca. 80% of the taxa in the genus Pinguicula, covering all three subgenera, were sequenced to demonstrate the inconsistency and explore a possible evolutionary history of the genus. Some incongruence was observed between nuclear and chloroplast topologies and the results from each of the three DNA analyses conflicted with the morphology-based subgeneric divisions. Both the ITS tree and network, however, corresponded with the biogeographical patterns of the genus supported by life-forms (winter rosette or hibernaculum formation) and basic chromosome numbers (haploidy). The dormant strategy evolved in a specific geographical region is a phylogenetic constraint and a synapomorphic characteristic within a lineage. Therefore, the results denied the idea that the Mexican group, morphologically divided into the three subgenera, independently acquired winter rosette formations. Topological incongruence among the trees or reticulations, indicated by parallel edges in phylogenetic networks, implied that some taxa originated by introgressive hybridisation. Although there are exceptions, species within the same geographical region arose from a common ancestor. Therefore, the classification by the floral characteristics is rather unreliable. The results obtained from this study suggest that evolution within the genus Pinguicula has involved; 1) ancient expansions to geographical regions with gene flow and subsequent vicariance with genetic drift, 2) acquirement of a common dormant strategy within a specific lineage to adapt a local climate (i.e., synapomorphic characteristic), 3) recent speciation in a short time span linked to introgressive hybridisation or multiplying the ploidy level (i.e., divergence), and 4) parallel evolution in floral traits among lineages found in different geographical regions (i.e., convergence). As such, the floral morphology masks and obscures the phylogenetic relationships among species in the genus
    • …
    corecore