13 research outputs found

    Biomolecular insights into North African-related ancestry, mobility and diet in eleventh-century Al-Andalus.

    Get PDF
    Funder: Helmholtz Zentrum München – German Research Center for Environmental HealthFunder: Leverhulme TrustHistorical records document medieval immigration from North Africa to Iberia to create Islamic al-Andalus. Here, we present a low-coverage genome of an eleventh century CE man buried in an Islamic necropolis in Segorbe, near Valencia, Spain. Uniparental lineages indicate North African ancestry, but at the autosomal level he displays a mosaic of North African and European-like ancestries, distinct from any present-day population. Altogether, the genome-wide evidence, stable isotope results and the age of the burial indicate that his ancestry was ultimately a result of admixture between recently arrived Amazigh people (Berbers) and the population inhabiting the Peninsula prior to the Islamic conquest. We detect differences between our sample and a previously published group of contemporary individuals from Valencia, exemplifying how detailed, small-scale aDNA studies can illuminate fine-grained regional and temporal differences. His genome demonstrates how ancient DNA studies can capture portraits of past genetic variation that have been erased by later demographic shifts-in this case, most likely the seventeenth century CE expulsion of formerly Islamic communities as tolerance dissipated following the Reconquista by the Catholic kingdoms of the north

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011

    Genetic Impact of the Bronze Age at the Fringes of Europe

    No full text
    The Bronze Age had a major effect on societies across Europe, bringing new tech- nologies, ideologies and languages. In recent years, archaeogenetic studies have demonstrated that this time period is also associated with a large-scale migration from the Eurasian steppe. This PhD thesis studies the genetic impact of the Bronze Age on two island fringes of Europe. The island of Crete lies in the Mediterranean, on the southeastern point of Europe. In contrast, the Orkney archipelago sits at the northwestern extreme of the coast of Britain. Although culturally different, they are both seen as being atypical compared to their mainland counterparts. Crete hosted a flourishing civilisation, the Minoans, who developed their own language, writing and architectural styles. Hypotheses have associated this culture to a continuation of pre-existing Neolithic society. The necropolis of Armenoi presents a unique opportunity to understand this population as it dates to a transition period in Crete between the indigenous Minoan and the mainland Mycenaean culture. Analyses of the genetic composition of Armenoi provided insights into whether this cultural change occurred as the result of the movement of ideas or people. Genetic diversity, similarities to other ancient populations, and kin groups within the cemetery were investigated. Isotopic analysis will be used to demonstrate the dietary composition of the population. The Bronze Age of Orkney is often seen as a cultural backwater, not undergoing the same cultural changes of the British mainland. Differences seen during the British Bronze Age are associated with a large population turnover. The Bronze Age in Orkney is different to other parts of Britain, and genomic analysis will determine whether Orkney was part of this migration or not. The impact of the Bronze Age will also be assessed in Britain by studying a time transect from across the island. These studies will provide insights into the local populations and their place in comparison to the broader history of Europe

    Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney

    Get PDF
    Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day

    Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney

    No full text
    Raw sequencing reads of ancient samples produced for this study have been deposited in the European Nucleotide Archive under accession no. PRJEB46830. Modern mitochondrial genomes generated as part of this study have been deposited in GenBank, accession nos. MZ846240 to MZ848095.Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day.We thank Steve Birch, Jenny Murray, and Sue Black for help with samples; Harald Ringbauer for advice on hapROH; and Joyce Richards for comments on an early draft. Excavations at LoN and KoS are directed by H.M. and G.W., EASE (Environment and Archaeology Services), grant funded by Historic Environment Scotland. M. Ni Challanain, M. McCormick, and D. Gooney undertook osteological identifications and sample selection. K.D., M.G.B.F, P.J., M.S., G.O.-G, A.F., and S.R. were supported by a Leverhulme Trust Doctoral Scholarship program awarded to M.B.R. and M.P. DNA sequencing was also supported by the UK Natural Environment Research Council Biomolecular Analysis Facility (NBAF) at the University of Liverpool, under NBAF Pilot Scheme NBAF685, awarded to C.J.E. whilst at the University of Oxford. P.S., M.P., and M.B.R. acknowledge FCT (Fundação para a Ciência e a Tecnologia) support through project PTDC/EPH-ARQ/4164/2014, partially funded by FEDER (Fundo Europeu de Desenvolvimento Regional) funds (COMPETE 2020 project 016899). PS was supported by FCT, European Social Fund, Programa Operacional Potencial Humano, and the FCT Investigator Programme and acknowledges FCT/MEC (Ministério da Educação e Ciência) for support to CBMA through Portuguese funds (PIDDAC: Programa de Investimentos e Despesas de Desenvolvimento da Administração Central)—PEst-OE/BIA/UI4050/2014. V.M. and D.G.B. acknowledge the Science Foundation Ireland/Health Research Board/Wellcome Trust Biomedical Research Partnership Investigator Award No. 205072 to D.G.B., “Ancient Genomics and the Atlantic Burden.” The ORCADES was supported by the Chief Scientist Office of the Scottish Government (CZB/4/276, CZB/4/710), a Royal Society University Research Fellowship to J.F.W., the MRC (Medical Research Council) Human Genetics Unit quinquennial programme “QTL in Health and Disease,” Arthritis Research UK, and the EU FP6 EUROSPAN project (contract no. LSHG-CT-2006-018947). The Edinburgh Clinical Research Facility, University of Edinburgh, performed DNA extractions and the Sanger Institute performed whole-genome sequencing. The Viking Health Study–Shetland (VIKING) was supported by the MRC Human Genetics Unit quinquennial programme grant “QTL in Health and Disease.” DNA extractions were performed at the Edinburgh Clinical Research Facility, University of Edinburgh. Whole genome sequencing was supported by the Scottish Genomes Partnership award from the Chief Scientist Office of the Scottish Government and the MRC (grant reference SGP/1) and the MRC Whole Genome Sequencing for Health and Wealth Initiative (MC/PC/15080). We acknowledge Wellcome Trust funding (098051) for the ORCADES whole-genome sequencing. J.F.W. acknowledges support from the MRC Human Genetics Unit programme grant, “Quantitative traits in health and disease” (U. MC_UU_00007/10). We also acknowledge the invaluable contributions of the research nurses in Orkney and Shetland, the administrative team in Edinburgh, and the people of Orkney and Shetland

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    No full text
    BACKGROUN

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    Get PDF
    Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin- kexin type 9 (PCSK9) and reduces levels of low-density lipoprotein (LDL) cholesterol. We sought to evaluate the efficacy of bococizumab in patients at high cardiovascular risk. METHODS In two parallel, multinational trials with different entry criteria for LDL cholesterol levels, we randomly assigned the 27,438 patients in the combined trials to receive bococizumab (at a dose of 150 mg) subcutaneously every 2 weeks or placebo. The primary end point was nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina requiring urgent revascularization, or cardiovascular death; 93% of the patients were receiving statin therapy at baseline. The trials were stopped early after the sponsor elected to discontinue the development of bococizumab owing in part to the development of high rates of antidrug antibodies, as seen in data from other studies in the program. The median follow-up was 10 months. RESULTS At 14 weeks, patients in the combined trials had a mean change from baseline in LDL cholesterol levels of -56.0% in the bococizumab group and +2.9% in the placebo group, for a between-group difference of -59.0 percentage points (P<0.001) and a median reduction from baseline of 64.2% (P<0.001). In the lower-risk, shorter-duration trial (in which the patients had a baseline LDL cholesterol level of ≥70 mg per deciliter [1.8 mmol per liter] and the median follow-up was 7 months), major cardiovascular events occurred in 173 patients each in the bococizumab group and the placebo group (hazard ratio, 0.99; 95% confidence interval [CI], 0.80 to 1.22; P = 0.94). In the higher-risk, longer-duration trial (in which the patients had a baseline LDL cholesterol level of ≥100 mg per deciliter [2.6 mmol per liter] and the median follow-up was 12 months), major cardiovascular events occurred in 179 and 224 patients, respectively (hazard ratio, 0.79; 95% CI, 0.65 to 0.97; P = 0.02). The hazard ratio for the primary end point in the combined trials was 0.88 (95% CI, 0.76 to 1.02; P = 0.08). Injection-site reactions were more common in the bococizumab group than in the placebo group (10.4% vs. 1.3%, P<0.001). CONCLUSIONS In two randomized trials comparing the PCSK9 inhibitor bococizumab with placebo, bococizumab had no benefit with respect to major adverse cardiovascular events in the trial involving lower-risk patients but did have a significant benefit in the trial involving higher-risk patients
    corecore