66 research outputs found

    Observational study of adherence to European clinical practice guidelines for the management of acute coronary syndrome in revascularized versus non-revascularized patients – the CONNECT Study

    Get PDF
    SummaryBackgroundThe CONNECT study compared clinician adherence to guideline-recommended secondary prevention therapies prescribed at discharge for patients hospitalized for acute coronary syndrome (ACS) in those managed initially with percutaneous coronary intervention (PCI; revascularized) and those who did not undergo revascularization.MethodsPatients aged greater than or equal to 18 years, hospitalized for a documented ST-segment elevation or non-ST-segment elevation ACS, were enrolled consecutively over 1 month at 238 sites in France.ResultsCompared with revascularized patients (n=870), non-revascularized patients (n=706) were significantly older, and a greater proportion were women, had high-blood pressure, type-2 diabetes or a history of atherothrombotic or cardiac disease, but a smaller proportion had a history of coronary angioplasty. On discharge, non-revascularized patients were prescribed beta-blockers, aspirin, statins, angiotensin-converting enzyme inhibitors or adenosine diphosphate receptor antagonists less frequently than revascularized patients. An adherence score greater than or equal to 80% (at least four of the five recommended agents prescribed at discharge) was found in 96.7% of revascularized patients and 74.4% of non-revascularized patients (P<0.001).ConclusionsDespite a similar or even higher level of cardiovascular risk, non-revascularized ACS patients were prescribed guideline-recommended secondary prevention therapy less frequently than revascularized patients

    Frequency of fruit and vegetable consumption and coronary heart disease in France and Northern Ireland: the PRIME study

    Get PDF
    Fruit and vegetable consumption is associated with low CHD risk in the USA and Northern Europe. There is, in contrast, little information about these associations in other regions of Europe. The goal of the present study was to assess the relationship between frequency of fruit and vegetable intake and CHD risk in two European populations with contrasting cardiovascular incidence rates; France and Northern Ireland. The present prospective study was in men aged 50-59 years, free of CHD, who were recruited in France (n 5982) and Northern Ireland (n 2105). Fruit and vegetable intake was assessed by a food-frequency questionnaire. Incident cases of acute coronary events and angina were recorded over a 5-year follow-up. During follow-up there was a total of 249 ischaemic events. After adjustment on education level, smoking, physical activity, alcohol consumption, employment status, BMI, blood pressure, serum total and HDL-cholesterol, the relative risks (RR) of acute coronary events were 0·67 (95% CI 0·44, 1·03) and 0·64 (95% CI 0·41, 0·99) in the 2nd and 3rd tertiles of citrus fruit consumption, respectively (P for trend <0·03). Similar results were observed in France and Northern Ireland. In contrast, the RR of acute coronary events for ‘other fruit' consumption were 0·70 (95% CI 0·31, 1·56) and 0·52 (95% CI 0·24, 1·14) respectively in Northern Ireland (trend P<0·05) and 1·29 (95% CI 0·69, 2·4) and 1·15 (95% CI 0·68, 1·94) in France (trend P=0·5; interaction P<0·04). There was no evidence for any association between vegetable intake and total CHD events. In conclusion, frequency of citrus fruit, but not other fruits, intake is associated with lower rates of acute coronary events in both France and Northern Ireland, suggesting that geographical or related factors might affect the relationship between fruit consumption and CHD ris

    Peroxisome Proliferator-Activated Receptor Gamma Polymorphisms and Coronary Heart Disease

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptor γ (PPARG) gene have been associated with cardiovascular risk factors, particularly obesity and diabetes. We assessed the relationship between 4 PPARG SNPs (C-681G, C-689T, Pro12Ala, and C1431T) and coronary heart disease (CHD) in the PRIME (249 cases/494 controls, only men) and ADVANCE (1,076 cases/805 controls, men or women) studies. In PRIME, homozygote individuals for the minor allele of the PPARG C-689T, Pro12Ala, and C1431T SNPs tended to have a higher risk of CHD than homozygote individuals for the frequent allele (adjusted OR [95% CI] = 3.43 [0.96–12.27], P = .058, 3.41 [0.95–12.22], P = .060 and 5.10 [0.99–26.37], P = .050, resp.). No such association could be detected in ADVANCE. Haplotype distributions were similar in cases and control in both studies. A meta-analysis on the Pro12Ala SNP, based on our data and 11 other published association studies (6,898 CHD cases/11,287 controls), revealed that there was no evidence for a significant association under the dominant model (OR = 0.99 [0.92–1.07], P = .82). However, there was a borderline association under the recessive model (OR = 1.29 [0.99–1.67], P = .06) that became significant when considering men only (OR = 1.73 [1.20–2.48], P = .003). In conclusion, the PPARG Ala12Ala genotype might be associated with a higher CHD risk in men but further confirmation studies are needed

    The APOA5 Trp19 allele is associated with metabolic syndrome via its association with plasma triglycerides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The goal of the present study was to assess the effect of genetic variability at the APOA5/A4/C3/A1 cluster locus on the risk of metabolic syndrome.</p> <p>Methods</p> <p>The <it>APOA5 </it>Ser19Trp, <it>APOA5 </it>-12,238T>C, <it>APOA4 </it>Thr347Ser, <it>APOC3 </it>-482C>T and <it>APOC3 </it>3238C>G (<it>Sst</it>I) polymorphisms were analyzed in a representative population sample of 3138 men and women from France, including 932 individuals with metabolic syndrome and 2206 without metabolic syndrome, as defined by the NCEP criteria.</p> <p>Results</p> <p>Compared with homozygotes for the common allele, the odds ratio (OR) [95% CI] for metabolic syndrome was 1.30 [1.03–1.66] (<it>p </it>= 0.03) for <it>APOA5 </it>Trp19 carriers, 0.81 [0.69–0.95] (<it>p </it>= 0.01) for <it>APOA5 </it>-12,238C carriers and 0.84 [0.70–0.99] (<it>p </it>= 0.04) for <it>APOA4 </it>Ser347 carriers. Adjustment for plasma triglycerides, (but not for waist girth, HDL, blood pressure or glycemia – the other components of metabolic syndrome) abolished these associations and suggests that triglyceride levels explain the association with metabolic syndrome. There was no association between the <it>APOC3 </it>-482C>T or <it>APOC3 </it>3238C>G polymorphisms and metabolic syndrome. The decreased risk of metabolic syndrome observed in <it>APOA5 </it>-12,238C and <it>APOA4 </it>Ser347 carriers merely reflected the fact that the <it>APOA5 </it>Trp19 allele was in negative linkage disequilibrium with the common alleles of <it>APOA5 </it>-12,238T>C and <it>APOA4 </it>Thr347Ser polymorphisms.</p> <p>Conclusion</p> <p>The <it>APOA5 </it>Trp19 allele increased susceptibility to metabolic syndrome via its impact on plasma triglyceride levels.</p

    Risk thresholds for alcohol consumption : combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies

    Get PDF
    Background Low-risk limits recommended for alcohol consumption vary substantially across different national guidelines. To define thresholds associated with lowest risk for all-cause mortality and cardiovascular disease, we studied individual-participant data from 599 912 current drinkers without previous cardiovascular disease. Methods We did a combined analysis of individual-participant data from three large-scale data sources in 19 high-income countries (the Emerging Risk Factors Collaboration, EPIC-CVD, and the UK Biobank). We characterised dose-response associations and calculated hazard ratios (HRs) per 100 g per week of alcohol (12.5 units per week) across 83 prospective studies, adjusting at least for study or centre, age, sex, smoking, and diabetes. To be eligible for the analysis, participants had to have information recorded about their alcohol consumption amount and status (ie, non-drinker vs current drinker), plus age, sex, history of diabetes and smoking status, at least 1 year of follow-up after baseline, and no baseline history of cardiovascular disease. The main analyses focused on current drinkers, whose baseline alcohol consumption was categorised into eight predefined groups according to the amount in grams consumed per week. We assessed alcohol consumption in relation to all-cause mortality, total cardiovascular disease, and several cardiovascular disease subtypes. We corrected HRs for estimated long-term variability in alcohol consumption using 152 640 serial alcohol assessments obtained some years apart (median interval 5.6 years [5th-95th percentile 1.04-13.5]) from 71 011 participants from 37 studies. Findings In the 599 912 current drinkers included in the analysis, we recorded 40 310 deaths and 39 018 incident cardiovascular disease events during 5.4 million person-years of follow-up. For all-cause mortality, we recorded a positive and curvilinear association with the level of alcohol consumption, with the minimum mortality risk around or below 100 g per week. Alcohol consumption was roughly linearly associated with a higher risk of stroke (HR per 100 g per week higher consumption 1.14, 95% CI, 1.10-1.17), coronary disease excluding myocardial infarction (1.06, 1.00-1.11), heart failure (1.09, 1.03-1.15), fatal hypertensive disease (1.24, 1.15-1.33); and fatal aortic aneurysm (1.15, 1.03-1.28). By contrast, increased alcohol consumption was loglinearly associated with a lower risk of myocardial infarction (HR 0.94, 0.91-0.97). In comparison to those who reported drinking >0-100-200-350 g per week had lower life expectancy at age 40 years of approximately 6 months, 1-2 years, or 4-5 years, respectively. Interpretation In current drinkers of alcohol in high-income countries, the threshold for lowest risk of all-cause mortality was about 100 g/week. For cardiovascular disease subtypes other than myocardial infarction, there were no clear risk thresholds below which lower alcohol consumption stopped being associated with lower disease risk. These data support limits for alcohol consumption that are lower than those recommended in most current guidelines. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore