
The genetics of blood pressure regulation and its target organs 
from association studies in 342,415 individuals

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we 

analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of 

European ancestry and genotypes from an additional 140,886 individuals were used for validation. 

We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct 

association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in 

vascular endothelial cells, consistent with a primary role in blood pressure control through 

modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score 

showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood 

pressure risk score was significantly associated with target-organ damage in multiple tissues, with 

minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways 

and highlight tissues beyond the classic renal system in blood pressure regulation.

INTRODUCTION

There are considerable physiological, clinical and genetic data that point to the kidney as the 

major regulator of blood pressure (BP) and to renal damage as a consequence of long-term 

BP elevation. However, alternative hypotheses, such as increasing systemic vascular 

resistance, are also serious contenders to explain the rise of BP with increasing age, but with 

limited genetic support. The genetic basis of elevated blood pressure or hypertension (HTN) 

involves many loci that have been identified using large-scale analyses of candidate genes1,2, 

linkage studies, and genome-wide association studies (GWAS)3-12. The genes underlying BP 

regulation can help resolve many of the open questions regarding BP (patho-) physiology. 
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While ~40-50% of BP variability is heritable13,14, the genetic variation identified to date 

explains only ~2%1-12.

The Cardio-MetaboChip is a custom genotyping microarray designed to facilitate cost-

effective follow-up of nominal associations for metabolic and cardiovascular traits, including 

BP. This array comprises 196,725 variants, including ~5,000 SNPs with nominal (P <0.016) 

evidence of BP association in our previous GWAS meta-analysis5. Furthermore, the array 

includes several dense scaffolds for fine mapping of selected loci spanning, on average, 

genomic regions of 350 kilobases5,16, of which 24 include genome-wide significant BP 

association in the current study5,16.

RESULTS

Novel genetic loci associated with systolic and diastolic BP

We performed meta-analyses of association summary statistics from a total of 201,529 

individuals of European (EUR) ancestry from 74 studies: (i) 109,096 individuals from 46 

studies genotyped on Cardio-MetaboChip; and (ii) 92,433 individuals from 28 studies with 

imputed genotype data from genome-wide genotyping at variants included on the Cardio-

MetaboChip. Twenty-four of the 28 studies with genome-wide genotyping data had 

contributed to previous analyses (Supplementary Tables 1-3)5,7.

BP was measured using standardized protocols in all studies5,17 (Supplementary Table 1, 
Online methods). Association statistics for systolic and diastolic BP (SBP and DBP) in 

models adjusting for age, age2, sex, and body mass index (BMI), were obtained for each 

study separately, with study-specific genomic control applied to correct for possible 

population structure. Fixed-effects meta-analysis proceeded in 4 stages, separately for the 

following SNP associations: Stage 1, using results based on 46 studies using Cardio-

MetaboChip genotypes of 109,096 participants; Stage 2, using additional results based on 

imputed genotypes from genome-wide genotyping arrays in 4 previously unpublished 

studies; Stage 3 using imputed genotypes from genome-wide genotyping arrays in 24 

previously published studies5; and Stage 4, the joint meta-analysis of Stages 1-3 including a 

total of 201,529 independent individuals (Supplementary Figure 1, Supplementary Tables 

2-3, Supplementary Note). To account for population structure between studies in Stages 1-3 

of our meta-analysis, genomic control correction was applied to meta-analysis results from 

each of these stages in an approach aggregating summary statistics from GWAS and Cardio-

MetaboChip studies18,19.

After stage 4, 67 loci attained genome-wide significance (P < 5 × 10−8), 18 of which were 

not previously reported in the literature (Supplementary Table 4). Quantile-quantile plots 

of the stage 4 meta-analysis showed an excess of small P values, with an elevated genomic 

control lambda estimate that was persistent, albeit attenuated, after excluding all 66 loci 

(Supplementary Figure 2). This observation is compatible with either residual uncorrected 

population stratification or the presence of a large number of variants that are truly 

associated with BP but fail to achieve genome-wide significance in the current meta-

analysis. The Cardio-MetaboChip array's inclusion of SNPs from a prior BP GWAS5 does 

not appear to be the sole explanation, as we did not observe a significant decrease of the 
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excess of small P values after exclusion of all SNPs that were included on the Cardio-

MetaboChip based on nominal BP association (Supplementary Figures 3 and 4). Since the 

quantile-quantile plots continued to show deviation from the null expectation, we sought 

additional validation for 18 variants attaining genome-wide significance, but without prior 

support in the literature, in up to 140,886 individuals of European ancestry from UK 

Biobank20. For these SNPs, we performed a stage 5 meta-analysis combining the association 

summary statistics from stage 4 and UK Biobank, in a total of up to 342,415 individuals 

(Supplementary Table 5).

Upon stage 5 meta-analysis, 17 of 18 variants retained genome-wide significance for the 

primary trait (SBP or DBP result with the lower P value). The one variant that was not 

genome-wide significant had a borderline P value of 4.49 × 10−8 at stage 4. These findings 

are consistent with appropriate calibration of the association test statistics at stage 4 such 

that observing one failure among 18 validation tests is consistent with the use of a threshold 

(P < 5 × 10−8) designed to have a 1 in 20 chance of a result as or more extreme solely due to 

chance. In total, 66 loci attained genome-wide significance: 13 loci for SBP only, 12 loci for 

DBP only, and 41 loci for both traits. Of these, 17 BP loci were novel, while 49 were 

previously reported at genome-wide significance (Table 1 and Figure 1).

Compared with previously reported BP variants5,7,21, the average absolute effect size of the 

newly discovered variants is smaller, with comparable minor allele frequency (MAF), 

presumably owing to the increased power of a larger sample size (Table 2). As expected 

from the high correlation between SBP and DBP effects, the observed directions of effects 

for the two traits were generally concordant (Supplementary Figure 5), and the absolute 

effect sizes were inversely correlated with MAF (Table 1 and Supplementary Figure 6). 

The 66 BP SNPs explained 3.46% and 3.36% of SBP and DBP variance, respectively, a 

modest increase from 2.95% and 2.78% for SBP and DBP, respectively, for the 49 

previously reported SNPs (Supplementary Note). The low percent variance explained is 

consistent with estimates that large numbers of common variants with weak effects at a large 

number of loci influence BP5.

Signal refinement at the 66 BP loci

To identify distinct signals of association at the 66 BP loci and the variants most likely to be 

causal for each, we started with an approximate conditional analysis using a model selection 

procedure implemented in the GCTA-COJO package22,23 as well as a detailed literature 

review of all published BP association studies. GCTA-COJO analysis was performed using 

the association summary statistics for SBP and DBP from the Stage 4 EUR ancestry meta-

analyses, with the linkage disequilibrium (LD) between variants estimated on the basis of 

Cardio-MetaboChip genotype data from 7,006 individuals of EUR ancestry from the 

GoDARTS cohort24. More than one distinct BP association signal was identified at 13 loci at 

P < 5 × 10−8 (Supplementary Table 6, Supplementary Figures 7, and Supplementary 
Note). At six loci, the distinct signals were identified for both SBP and DBP analyzed 

separately; these trait-specific associations were represented by the same or highly 

correlated (r2 > 0.8) SNPs at 5 of the 6 loci (Supplementary Tables 7 and 8). We repeated 

GCTA-COJO analyses using the same summary association results, but with a different 
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reference sample for LD estimates (WTCCC1-T2D/58BC, N = 2,947, Supplementary 
Note) and observed minimal differences arising from minor fluctuations in the association P 
value in the joint regression models (Supplementary Tables 7 and 8). LD-based 

comparisons of published association signals at established BP loci, and the current study's 

findings suggested that at 10 loci, the signals identified by the single-SNP and the GCTA-

COJO analyses were distinct from those reported in the literature (Supplementary Table 9).

We then performed multivariable regression modeling in a single large cohort (Women's 

Genome Health Study, WGHS, N = 23,047) with simultaneous adjustment for both 1) all 

combinations of putative index SNPs for each distinct signal from the GCTA-COJO 

conditional analyses, and 2) all index SNPs for all potential distinct signals identified by our 

literature review (Supplementary Table 9, Supplementary Note). Although WGHS is very 

large as a single study, power is reduced in a single sample compared to that in the overall 

meta-analysis (23k vs. 342k individuals) and consequently the failure to reach significance 

does not represent non-replication for individual SNPs. The WGHS analysis supported two 

distinct association signals at eight of 13 loci identified in the GCTA-COJO analysis, but 

could not provide support for the remaining five (Supplementary Table 10). The joint SNP 

modeling in WGHS additionally supported two distinct signals of association at three other 

loci (GUCY1A3-GUCY1B3, SYNPO2L and TBX5-TBX3), at which the SNP identified in 

the current study is distinct from that previously reported in the literature5,11.

We sought to refine the localization of likely functional variants at loci with high-density 

coverage on the Cardio-MetaboChip. We followed a Bayesian approach to define, for each 

signal, credible sets of variants that have 99% probability of containing or tagging the causal 

variant (Supplementary Note). To improve the resolution of the method, the analyses were 

restricted to 24 regions selected to fine map (FM) genetic associations, and that included at 

least one SNP reaching genome-wide significance in the current meta-analyses 

(Supplementary Table 11). Twenty-one of the Cardio-MetaboChip FM regions were BP 

loci in the original design, with three of the newly discovered BP loci in FM regions that 

were originally selected for other non-BP traits. We observed that the 99% credible SNP sets 

at five BP loci spanned <20kb. The greatest refinement was observed at the SLC39A8 locus 

for SBP and DBP, and at the ZC3HC1 and PLCE1 loci for DBP, where the 99% credible sets 

included only the index variants (Supplementary Table 12). Although SNPs in credible sets 

were primarily non-coding, they included one synonymous and seven non-synonymous 

variants that attained high posterior probability of driving seven distinct association signals 

at six BP loci (Supplementary Table 12). Of these, three variants alone account for more 

than 95% of the posterior probability of driving the association signal observed at each of 

three loci (Supplementary Table 12 and 13). Despite reduced statistical power, the 

analyses restricted to the samples with Cardio-MetaboChip genotypes only (N = 109,096) 

identified the majority of SNPs identified in the GWAS+Cardio-MetaboChip data 

(Supplementary Table 12). The full list of SNPs in the 99% credible sets are listed in 

Supplementary Table 13.
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What do the BP variants do?

Index SNPs or their proxies (r2 > 0.8) altered amino acid sequence at 11 of 66 BP loci 

(Table 1). Thus, the majority of BP-association signals are likely driven by non-coding 

variants hypothesized to regulate expression of some nearby gene in cis. To characterize 

their effects, we first sought SNPs associated with gene expression (eSNPs) from a range of 

available expression data which included hypertension target end organs and cells of the 

circulatory system (heart tissue, kidney tissue, brain tissue, aortic endothelial cells, blood 

vessels) and other tissue/cell types (CD4+ macrophages, monocytes lymphoblastoid cell 

lines, skin tissue, fat tissue, and liver tissue). Fourteen BP-associated SNPs at the MTHFR-

NPPB, MDM4, ULK4, CYP1A1-ULK3, ADM, FURIN-FES, FIGN, and PSMD5 loci were 

eSNPs across different tissues (Supplementary Table 14). Of these 14 eSNPs, three were 

also predicted to alter the amino acid sequence at the MTHFR-NPPB, MAP4 and ULK4 
loci, providing two potential mechanisms to explore in functional studies. Second, we used 

gene expression levels measured in whole blood in two different samples each including 

>5,000 individuals of EUR descent. We tested whether the lead BP SNP was associated with 

expression of any transcript in cis (<1Mb from the lead SNP at each locus) at a false 

discovery rate (FDR) of < 0.05, accounting for all possible cis-transcript association tests 

genome-wide. It is likely that we did not genotype the causal genetic variant underlying each 

BP association signal; a nearby SNP-transcript association, due to LD, may therefore reflect 

an independent genetic effect on expression that is unrelated to the BP effect. Consequently, 

we assumed that the lead BP SNP and the most significant eSNP for a given transcript 

should be highly correlated (r2 > 0.7). Furthermore, we assumed that the significance of the 

transcript association with the lead BP SNP should be substantially reduced in a conditional 

model adjusting for the best eSNP for a given transcript. Eighteen SNPs at 15 loci were 

associated with 22 different transcripts, with a total of 23 independent SNP-transcript 

associations (three SNPs were associated with two transcripts each, Supplementary Table 
15, Supplementary Note). The genes expressed in a BP SNP allele-specific manner are 

clearly high-priority candidates to mediate the BP association. In whole blood, these genes 

included obvious biological candidates such as GUCY1A3, encoding the alpha subunit of 

the soluble guanylate cyclase protein, and ADM, encoding adrenomedullin, both of which 

are known to induce vasodilation25,26. There was some overlap of eSNPs between the whole 

blood and other tissue datasets at the MTHFR-NPPB, MDM4, PSMD5, ULK4 and 

CYP1A1-ULK3 loci, illustrating additional potentially causal genes for further study.

An alternative method for understanding the effect on BP of non-coding variants is to 

determine whether they fall within DNaseI hypersensitivity sites (DHSs). We performed two 

analyses to investigate whether BP SNPs or their LD proxies (r2 > 0.8) were enriched in 

DHSs in a cell-type-specific manner (Supplementary Note). First, we used Epigenomics 

Roadmap and ENCODE DHS data from 123 adult cell lines or tissues27-29 to estimate the 

fold increase in the proportion of BP SNPs mapping to DHSs compared to SNPs associated 

at genome-wide significance with non-BP phenotypes from the NHGRI GWAS catalog30. 

We observed that 7 out of the 10 cell types with the greatest relative enrichment of BP SNPs 

mapping to DHSs were from blood vessels (vascular or micro-vascular endothelial cell-lines 

or cells) and 11 of the 12 endothelial cells were among the top quarter most enriched among 

the 123 cell types (Figure 2 and Supplementary Table 16). In a second analysis of an 
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expanded set of tissues and cell lines, in which cell types were grouped into tissues 

(Supplementary Table 17), BP-associated SNP enrichment in DHSs in blood vessels was 

again observed (P = 1.2 × 10−9), as well as in heart samples (P = 5.3 × 10−8; 

Supplementary Table 18).

We next tested whether there was enrichment of BP SNPs in H3K4me331 sites, a 

methylation mark associated with both promoter and enhancer DNA. We observed 

significant enrichment in a range of cell types including CD34 primary cells, adult kidney 

cells, and muscle satellite cultured cells(Supplementary Table 19). Enrichment of BP SNPs 

in predicted strong and weak enhancer states and in active promoters32 in a range of cell 

types was also observed (Supplementary Table 20, Supplementary Figure 8).

We used Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA)33 to 

attempt to identify pathways over-represented in the BP association results. No gene sets 

meeting experiment-wide significance for enrichment for BP association were identified by 

MAGENTA after correction for multiple testing, although some attained nominal 

significance (Supplementary Table 21, Supplementary Note). We also adapted the 

DEPICT34 pathway analysis tool (Data-driven Expression Prioritized Integration for 

Complex Traits) to identify assembled gene-sets that are enriched for genes near associated 

variants, and to assess whether genes from associated loci were highly expressed in 

particular tissues or cell types. Using the extended BP locus list based on genome-wide 

significant loci from this analysis and previously published SNPs that may not have reached 

genome-wide significance in the current analysis (Supplementary Table 9), we identified 

five significant (FDR ≤ 5%) gene sets: abnormal cardiovascular system physiology, G Alpha 

1213 signaling events, embryonic growth retardation, prolonged QT interval, and abnormal 

vitelline vasculature morphology. We also found that suggestive SBP and DBP associations 

(P < 1 × 10−5) were enriched for reconstituted gene-sets at DBP loci (mainly related to 

developmental pathways), but not at SBP loci (Supplementary Table 22, Supplementary 
Note). In a final analysis, we assessed Cardio-MetaboChip SNPs at the fine-mapping loci 

using formaldehyde-assisted isolation of regulatory elements (FAIRE-gen) in 

lymphoblastoid cell lines35. Our results provided support for two SNPs, one of which SNP 

(rs7961796 at the TBX5-TBX3 locus) was located in a regulatory site. Although the other 

SNP (rs3184504 at the SH2B3 locus) is a non-synonymous variant, there was also a 

regulatory site indicated by DNaseI and H3K4me1 signatures at the locus, making the SNP a 

potential regulatory variant (Supplementary Table 23)36. Both SNPs were included in the 

list of 99% credible SNPs at each locus.

Asian- and African ancestry BP SNP association

We tested the 66 lead SNPs at the established and novel loci for association with BP in up to 

20,875 individuals of South Asian (SAS) ancestry (PROMIS and RACE studies), 9,637 

individuals of East Asian (EAS) ancestry (HEXA, HALST, CLHNS, DRAGON, and TUDR 

studies), and 33,909 individuals of African (AFR) ancestry (COGENT-BP consortium, 

Jupiter, SPT, Seychelles, GXE, and TANDEM studies). As expected, the effect allele 

frequencies are very similar across studies of the same ethnicity, but markedly different 

across different ancestry groups (Supplementary Figure 9). Many associations of 
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individual SNPs failed to reach P < 0.05 for the BP trait with the lower P value 

(Supplementary Table 24), which could potentially be due to the much lower statistical 

power at the sample sizes available, different patterns of LD at each locus across ancestries, 

variability in allele frequency, or true lack of association in individuals of a given non-

European ancestry. The low statistical power for the great majority of SNPs tested is visible 

considering SNP-by-SNP power calculations using European ancestry effect sizes 

(Supplementary Table 24). However, concordant directions of allelic effects for both SBP 

and DBP were observed for 45/66 SNPs in SAS, 36/60 SNPs in EAS, and 42/66 SNPs in 

AFR samples: the strongest concordance with SAS may not be surprising because South 

Asians are more closely related to Europeans than are East Asians or Africans. Moreover, 

strong correlation of effect sizes was observed between EUR samples with SAS, EAS, or 

AFR samples (r = 0.55, 0.60, and 0.48, respectively). A 66-SNP SBP or DBP risk score 

were significant predictors of SBP and DBP in all samples. A 1 mm Hg higher SBP or DBP 

risk score in EUR samples was associated with a 0.58/0.50 mm Hg higher SBP/DBP in SAS 

samples (SBP P = 1.5 × 10−19, DBP P = 3.2 × 10−15), 0.49/0.50 mm Hg higher SBP/DBP in 

EAS samples (SBP P = 1.9 × 10−10, DBP P = 1.3 × 10−7), and 0.51/0.47 mm Hg higher 

SBP/DBP in AFR samples (SBP P = 2.2 × 10−21, DBP P = 6.5 × 10−19). The attenuation of 

the genetic risk score estimates in non-European ancestries is presumably due to inclusion of 

a subset of variants that lack association in the non-European or admixed samples.

We subsequently performed a trans-ethnic meta-analysis of the 66 SNPs in all 64,421 

samples across the three non-European ancestries. After correcting for 66 tests, 12/66 SNPs 

were significantly associated with either SBP or DBP (P < 7.6 × 10−4), with a correlation of 

EUR and non-EUR effect estimates of 0.77 for SBP and 0.67 for DBP; the European-

ancestry SBP or DBP risk score was associated with 0.53/0.48 mm Hg higher BP per 

predicted mm Hg SBP/DBP respectively (SBP P < 6.6 × 10−48, DBP P < 1.3 × 10−38). For 7 

of the 12 significant SNPs, no association has previously been reported in genome-wide 

studies of non-European ancestry. Some heterogeneity of effects was observed between 

European and non-European effect estimates (Supplementary Table 24). Taken together, 

these findings suggest that, in aggregate, BP loci identified using data from individuals of 

EUR ancestry are also predictive of BP in non-EUR samples, but larger non-European 

sample sizes will be needed to establish precisely which individual SNPs are associated in a 

given ethnic group.

Impact on hypertensive target organ damage

Long-term elevated BP causes target organ damage, especially in the heart, kidney, brain, 

large blood vessels, and the retinal vessels37. Consequently, the genetic effect of the 66 SBP 

and DBP SNPs on end-organ outcomes can be directly tested using the risk score, although 

some outcomes lacked results for a small number of SNPs. Interestingly, BP risk scores 

significantly predicted (Supplementary Note) coronary artery disease risk, left ventricular 

mass and wall thickness, stroke, urinary albumin/creatinine ratio, carotid intima-medial 

thickness and central retinal artery caliber, but not heart failure or other kidney phenotypes, 

after accounting for the number of outcomes examined (Table 3). Because outlier effects can 

affect risk scores, we repeated the risk score analysis removing iteratively SNPs that 

contributed to statistical heterogeneity (SNP-trait effects relative to SNP-BP effects). 
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Heterogeneity was defined based on a multiple testing adjusted significance threshold for 

Cochran's Q test of homogeneity of effects (Supplementary Note). The risk score analyses 

restricted to the subset of SNPs showing no heterogeneity of effect revealed essentially 

identical results, with the exception that urinary albumin/creatinine ratio was no longer 

significant. The per-SNP results are provided in Supplementary Table 25 and 

Supplementary Figures 10. Because large-scale GWAS of non-BP cardiovascular risk 

factors are available, we examined the BP risk scores as predictors of other cardiovascular 

risk factors: LDL-cholesterol, HDL-cholesterol, triglycerides, type 2 diabetes, BMI, and 

height. We observed nominal (P <0.05) associations of the BP risk scores with risk factors, 

although mostly in the opposite direction to the risk factor-CVD association 

(Supplementary Table 26). The failure to demonstrate an effect of BP risk scores on heart 

failure may reflect limited power from a modest sample size, but the lack of significant 

effects on renal measures suggests that the epidemiologic relationship of higher BP and 

worse renal function may not reflect direct consequences of BP elevation.

DISCUSSION

The study reported here is the largest to date to investigate the genomics of BP in multiple 

continental ancestries. Our results highlight four major features of inter-individual variation 

in BP: (1) we identified 66 (17 novel) genome-wide significant loci for SBP and DBP by 

targeted genotyping in up to 342,415 individuals of European ancestry that cumulatively 

explain ~3.5% of the trait; (2) the variants were enriched for cis-regulatory elements, 

particularly in vascular endothelial cells; (3) the variants had broadly comparable BP effects 

in South Asians, East Asian and Africans, albeit in smaller sample sizes; and, (4) a 66 SNP 

risk-score predicted target organ damage in the heart, cerebral vessels, carotid artery and the 

eye with little evidence for an effect in kidneys. Overall, there was no enrichment of a single 

genetic pathway in our data; rather, our results are consistent with the effects of BP arising 

from multiple tissues and organs.

Genetic and molecular analyses of Mendelian syndromes of hypertension and hypotension 

point largely to a renal origin, involving multiple rare deleterious mutations in proteins that 

regulate salt-water balance38. This is strong support for Guyton's hypothesis that the 

regulation of sodium excretion by the kidney and its effects on extracellular volume are a 

prime pathway determining intra-arterial pressure39. However, our genetic data from 

unselected individuals in the general community argues against a single dominant renal 

effect. The 66 SNPs we identified are not chance effects, but have a global distribution and 

impact on BP that are consistent as measured by their effects across the many studies meta-

analyzed. That they are polymorphic across all continental ancestries argues for their origin 

and functional effects prior to human continental differentiation.

However several of the 17 novel loci contain strong positional biological candidates, these 

are described in greater detail in Supplementary Table 27 and the Supplementary Note. 

The single most common feature we identified was the enrichment of regulatory elements 

for gene expression in vascular endothelial cells. The broad distribution of these cells across 

both large and small vessels and across all tissues and organs suggest that functional 

variation in these cells affects endothelial permeability or vascular smooth muscle cell 
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contractility via multiple pathways. These hypotheses will need to be rigorously tested in 

appropriate models, to assess the contribution of these pathways to BP control, and these 

pathways could also be targets for systemic anti-hypertensive therapy as they are for the 

pulmonary circulation42.

In summary, these genetic observations may contribute to an improved understanding of BP 

biology and a re-evaluation of the pathways considered relevant for therapeutic BP control.

ONLINE METHODS

Cohorts contributing to systolic (SBP) and diastolic blood pressure (DBP) analyses

Studies contributing to BP association discovery including community- and population-

based collections as well as studies of non-BP traits, analyzed as case and control samples 

separately. Details on each of the studies including study design and BP measurement are 

provided in Supplementary Table 1, genotyping information in Supplementary Table 2, 

and participant characteristics in Supplementary Table 3. All participants provided written 

informed consent and the studies were approved by local Research Ethics Committees 

and/or Institutional Review Boards.

European ancestry meta-analysis

BP was measured using standardized protocols in all studies regardless of whether the 

primary focus was BP or another trait. We initially analyzed affected and unaffected 

individuals from samples selected as cases (e.g. type 2 diabetes) or controls, separately. 

However, because sensitivity analyses did not reveal any significant difference in BP effect 

size estimates between case and control samples (data not shown), we analyzed all samples 

combined. When available, the average of two BP measurements was used for association 

analyses (Supplementary Table 1). If an individual was taking a BP-lowering treatment, the 

underlying systolic BP (SBP) and diastolic BP (DBP) were estimated by adding 15 mmHg 

and 10 mmHg, respectively, to the measured values, as done in prior analyses.

A meta-analysis of 340,934 individuals of European descent was undertaken in four stages 

with subsequent validation in an independent cohort. Because stage 1 Cardio-MetaboChip 

samples included many SNPs selected on the basis of association with BP in earlier GWAS, 

we performed genomic control using a set of putative null SNPs based on P > 0.10 in earlier 

GWAS of SBP and DBP or both. Stage 2 samples with genome-wide genotyping used the 

entire genome-wide set of SNPs for genomic control given the lack of ascertainment. The 

study design is summarized in Supplementary Figure 1, and further details are provided in 

Supplementary Tables 2-5 and the Supplementary Note.

Systematic PubMed search +/− 100kb of each newly discovered index SNP

All genes with any overlap with a 200kb region centered around each of the 17 newly 

discovered lead SNPs were identified using the UCSC Genome Browser. A search term was 

constructed for each gene including the short and long gene name and the terms “blood 

pressure” and “hypertension” (e.g. for NPPA on chr 1: “NPPA OR natriuretic peptide A 
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AND (blood pressure OR hypertension)”) and the search results of each search term from 

PubMed were individually reviewed.

Trait variance explained

The trait variance explained by 66 lead SNPs at novel and known loci was evaluated in one 

study that contributed to the discovery effort: the Atherosclerosis Risk in Communities 

(ARIC) study. We constructed a linear regression model with all 66 or the subset of 49 

known SNPs as a set of predictors of the BP residual after adjustment for covariates of the 

adjusted treatment-corrected BP phenotype (SBP or DBP). The r2 from the regression model 

was used as the estimate of trait variance explained.

European ancestry GCTA-COJO analysis

To identify multiple distinct association signals at any given BP locus, we undertook 

approximate conditional analyses using a model selection procedure implemented in the 

GCTA-COJO software package44,45. To evaluate the robustness of the GCTA-COJO results 

to the choice of reference data set, model selection was performed using the LD between 

variants in separate analyses from two datasets of European descent, both with individuals 

from the UK with Cardio-MetaboChip genotype data: GoDARTS with 7,006 individuals and 

WTCCC1-T2D/58BC with 2,947 individuals. Assuming that the LD between SNPs more 

than 10 Mb away or on different chromosomes is zero, we undertook the GCTA-COJO step 

wise model selection to select SNPs that were conditionally-independently associated with 

SBP and DBP, in turn, at a genome-wide significance, given by P < 5×10−8 

(Supplementary Tables 6-8) using the stage 4 combined European GWAS+ Cardio-

MetaboChip meta-analysis.

Conditional analyses in the Women's Genome Health Study (WGHS)

Multivariable regression modeling was performed for each possible combination of putative 

independent SNPs from a) model selection implemented in GCTA-COJO and b) a 

comprehensive manual review of the literature (Supplementary Table 9). Any SNP with P 
< 5×10−8 in a previous reported BP GWAS was considered. A total of 46 SNPs were 

examined (Supplementary Table 10). Genome-wide genotyping data imputed to 1000 

Genomes in the WGHS (N = 23,047) were used. Regression modeling was performed in the 

R statistical language (Supplementary Table 10).

Fine mapping and determination of credible sets of causal SNPs

The GCTA-COJO and WGHS conditional analyses identified multiple distinct signals of 

association at multiple loci (Supplementary Tables 6 and 10). Of the 24 loci considered in 

fine-mapping analyses, 16 had no evidence for the existence of multiple distinct association 

signals, so it is reasonable to assume that there is a single causal SNP and therefore the 

credible sets of variants could be constructed using the association summary statistics from 

the unconditional meta-analyses. However, in the remaining eight loci, where evidence of 

secondary signals was observed from GCTA-COJO, we performed approximate conditional 

analyses across the region by conditioning on each index SNP (Supplementary Table 11). 

By adjusting for the other index SNPs at the locus, we can therefore assume a single variant 
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is driving each “conditionally-independent” association signal, and we can construct the 

99% credible set of variants on the basis of the approximate conditional analysis from 

GCTA-COJO (Supplementary Tables 12-13). At five of the eight loci with multiple distinct 

signals of association, one index SNP mapped outside of the fine-mapping region, so a 

credible set could not be constructed.

eQTL analysis: Whole Blood

NESDA/NTR: Whole blood eQTL analyses were performed in samples from the 

Netherlands Study of Depression and Anxiety (NESDA)46 and the Netherlands Twin 

Registry (NTR)47 studies. RNA expression analysis was performed in the statistical software 

R. The residuals resulting from the linear regression analysis of the probe set intensity 

values onto the covariates sex, age, body mass index (kg/m2), smoking status coded as a 

categorical covariate, several technical covariates, and three principal components were 

used. The eQTL effects were detected using a linear mixed model approach, including for 

each probe set the expression level (normalized, residualized and without the first 50 

expression PCs) as dependent variable; the SNP genotype values as fixed effects; and family 

identifier and zygosity (in the case of twins) as random effects to account for family and 

twin relations48.

The eQTL effects were defined as cis when probe set–SNP pairs were at distance < 1M base 

pairs. At a FDR of 0.01 applied genome-wide, not just for candidate SNPs, the P value 

threshold was 1×10−4 for the cis-eQTL analysis. For each probe set that displayed a 

statistically significant association with at least one SNP located within its cis region, we 

identified the most significantly associated SNP and denoted this as the top cis-eQTL SNP. 

See Supplementary Note for details.

eQTL analysis: Selected published eQTL datasets

Lead BP SNP and proxies (r2 > 0.8) were searched against a collected database of 

expression SNP (eSNP) results. The reported eSNP results met criteria for statistical 

thresholds for association with gene transcript levels as described in the original papers. The 

non-blood cell tissue eQTLs searched included aortic endothelial cells49, left ventricle of the 

heart 50, cd14+ monocytes 51 and the brain 52. The results are presented in Supplementary 
Tables 14-15.

Enrichment analyses: Analysis of cell-specific DNase hypersensitivity sites (DHSs) using 
an OR method

The overlap of Cardio-MetaboChip SNPs with DHSs was examined using publicly available 

data from the Epigenomics Roadmap Project and ENCODE, choosing different cutoffs of 

Cardio-MetaboChip P values. The DHS mappings were available for 123 mostly adult cells 

and tissues 53 (downloaded from The DHS mappings were specified as both “narrow” and 

“broad” peaks, referring to reduction of the experimental data to peak calls at 0.1% and 

1.0% FDR thresholds, respectively. Thus, the “narrow” peaks are largely nested within the 

“broad” peaks. Experimental replicates of the DHS mappings (typically duplicates) were 

also available for the majority of cells and tissues.
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SNPs from the Cardio-MetaboChip genome-wide scan were first clumped in PLINK in 

windows of 100kb and maximum r2 = 0.1 among LD relationships from the 1000 Genomes 

European data. Then, the resulting index SNPs at each P value threshold were tagged with r2 

= 0.8 in windows of 100kb, again using LD relationships in the 1000 Genomes, restricted to 

SNPs with MAF > 1% and also present in the HapMap2 CEU population. A reference set of 

SNPs was constructed using the same clumping and tagging procedures applied to GWAS 

catalog SNPs (available at http://www.genome.gov/gwastudies/, accessed 3/13/2013)54 with 

discovery P < 5×10−8 in European populations. A small number of reference SNPs or their 

proxies overlapping the BP SNPs or their proxies were excluded. After LD pruning and 

exclusions, there were a total of 1,196 reference SNPs. For each cell type and P value 

threshold, the enrichment of SBP or DBP SNPs (or their LD proxies) mapping to DHSs was 

expressed as an odds ratio (OR) relative to the GWAS catalog reference SNPs (or their LD 

proxies), using logistic mixed effect models treating the replicate peak determinations as 

random effects (glmer package in R). The significance of the enrichment ORs was derived 

from the significance of beta coefficients for the main effects in the mixed models (Figure 2, 
Supplementary Table 16).

Enrichment analyses: Analysis of tissue-specific enrichment of BP variants and H3K4me3 
sites

An analysis to test for significant cell-specific enrichment in the overlap of BP SNPs (or 

their proxies) with H3K4me3 sites was performed as described in Trynka et al, 201355. The 

measure of overlap is a “score” that is constructed by dividing the height of an H3K4me3 

ChIP signal in a particular cell by the distance between the nearest test SNP. The 

significance of the scores (i.e. P value) for all SNPs was determined by a permutation 

approach that compares the observed scores to scores of SNPs with similar properties to the 

test SNPs, essentially in terms of LD and proximity to genes (Supplementary Note). The 

number of permutations determined the number of significant digits in the P values and we 

conducted 10,000 iterations. Results are shown in Supplementary Table 19.

Enrichment analyses: Analysis of tissue-specific DHSs and chromatin states using 
GREGOR

The DNase-seq ENCODE data for all available cell types were downloaded in the processed 

“narrowPeak” format. The local maxima of the tag density in broad, variable-sized “hotspot” 

regions of chromatin accessibility were thresholded at FDR 1% with peaks set to a fixed 

width of 150bp. Individual cell types were further grouped into 41 broad tissue categories by 

taking the union of DHSs for all related cell types and replicates. For each GWAS locus, a 

set of matched control SNPs was selected based on three criteria: 1) number of variants in 

LD (r2 > 0.7; ± 8 variants), 2) MAF (± 1%), and 3) distance to nearest gene (± 11,655 bp). 

To calculate the distance to the nearest gene, the distance to the 5’ flanking gene (start and 

end position) and to the 3’ flanking gene was calculated and the minimum of these 4 values 

was used. If the SNP fell within the transcribed region of a gene, the distance was 0. The 

probability that a set of GWAS loci overlap with a regulatory feature more often than we 

expect by chance was estimated.
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Enrichment analyses: FAIRE analysis of BP variants in fine-mapping regions in 
lymphoblastoid cell lines

FAIRE analysis was performed on a sample of 20 lymphoblastoid cell lines of European 

origin. All samples were genotyped using the Cardio-MetaboChip genotyping array, and BP 

SNPs and LD proxies (r2 > 0.8) at the fine mapping loci (N = 24, see Supplementary Table 
23) were assessed to identify heterozygous imbalance between non-treated and FAIRE-

treated chromatin. A paired t-test was used to compare the B allele frequency (BAF) arising 

from formaldehyde-fixed chromatin sheared by sonication and DNA purified to the BAF 

when the same chromatin sample underwent FAIRE to enrich for open chromatin. Three 

hundred and fifty-seven Cardio-MetaboChip BP SNPs were directly genotyped across the 

fine mapping regions. The Bonferroni-corrected threshold of significance is P < 0.0001 

(0.05/357). The results for SNPs with P < 0.05 are reported in (Supplementary Table 23). 

FAIRE results were not available for some SNPs with missing data due to genotype failure 

or not having >3 heterozygous individuals for statistical analysis. Therefore there are no 

results for three lower frequency BP loci (SLC39A8, CYP17A1-NT5C2 and GNAS-EDN3) 

and for the second signal at the following loci: MTHFR-NPPB (rs2272803), MECOM 
(rs2242338) and HFE rs1800562).

Pathway analyses: MAGENTA

MAGENTA tests for enrichment of gene sets from a precompiled library derived from GO, 

KEGG, PATHTER, REACTOME, INGENUITY, and BIOCARTA was performed as 

described by Segré et al, 201056. Enrichment of significant gene-wide P values in gene sets 

is assessed by 1) using LD and distance criteria to define the span of each gene, 2) selecting 

the smallest P value among SNPs mapping to the gene span, and 3) adjusting this P value 

using a regression method that accounts for the number of SNPs, the LD, etc. In the second 

step, MAGENTA examines the distribution of these adjusted P values and defines thresholds 

for the 75%ile and the 95%ile. In the third step, MAGENTA calculates an enrichment for 

each gene set by comparing the number of genes in the gene set with P value less than either 

the 75th or 95th %ile to the number of genes in the gene set with P value greater than either 

the 75th or 95th %ile, and then comparing this quotient to the same quotient among genes 

not in the gene set. This gene-set quotient is assigned a P value based on reference to a 

hypergeometric distribution. The results based on our analyses are indicated in 

Supplementary Table 21.

Pathway analyses: DEPICT

We applied the DEPICT 57 analysis separately on genome-wide significant loci from the 

overall blood pressure (BP) Cardio-MetaboChip analysis including published blood pressure 

loci (see Supplementary Table 22). SNPs at the HFE and BAT2-BAT5 loci (rs1799945, 

rs1800562, rs2187668, rs805303, rs9268977) could not be mapped. As a secondary analysis, 

we additionally included associated loci (P < 1×10−5) from the Cardio-MetaboChip stage 4 

combined meta-analyses of SBP and the DBP. DEPICT assigned genes to associated regions 

if they overlapped or resided within associated LD blocks with r2 > 0.5 to a given associated 

SNP.
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Literature review for genes at the newly discovered loci

Recognizing that the most significantly associated SNP at a locus may not be located in the 

causal gene and that the functional consequences of a SNP often extends beyond 100kb, we 

conducted a literature review of genes in extended regions around newly discovered BP 

index SNPs. The genes for this extensive review were identified by DEPICT 

(Supplementary Table 22).

Non-European meta-analysis

To assess the association of the 66 significant loci from the European ancestry meta-analysis 

in non-European ethnicities, we obtained lookup results for the 66 index SNPs for 

participants of South-Asian ancestry (8 datasets, total N = 20,875), East-Asian ancestry (5 

datasets, total N = 9,637), and African- and African-American ancestry (6 datasets, total N = 

33,909). The association analyses were all conducted with the same covariates (age, age2, 

sex, BMI) and treatment correction (+15/10 mm Hg in the presence of any hypertensive 

medication) as the association analyses for the discovery effort in Europeans. Tests for 

heterogeneity across effect estimates in European, South Asian, East Asian and African 

derived samples were performed using GWAMA58.

Genetic risk score and cardiovascular outcomes

The gtx package for the R statistical programming language was used to estimate the effect 

of the SNP-risk score on the response variable in a regression model59.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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D.E.A., G.B.E. Study PI: A.C., R.S.C., A.B.W.

SCARFSHEEP: Study phenotyping: B.G. Genotyping or analysis: R.J.S. Study PI: 

A.Hamsten, U.d.F.

DPS: Study phenotyping: J.L. Genotyping or analysis: A.U.J., P.S.C. Study PI: J.T., M.U.

DR's EXTRA: Study phenotyping: P.K. Genotyping or analysis: A.U.J., M.H. Study PI: 

R.Rauramaa, T.A.L.

FIN-D2D 2007: Genotyping or analysis: A.U.J., L.L.B. Study PI: J.Saltevo, L.M.

METSIM: Study phenotyping: H.M.S. Genotyping or analysis: A.U.J., A.Stančáková Study 

PI: M.L., J.K.

MDC-CVA: Study phenotyping: O.Melander Genotyping or analysis: O.Melander, C.F. 

Study PI: O.Melander

BRIGHT: Study phenotyping: A.F.D., M.J.B., N.J.S., J.M.C. Genotyping or analysis: T.J., 

P.B.M. Study PI: M.J.C., A.F.D., M.J.B., N.J.S., J.M.C., P.B.M.

NESDA: Study phenotyping: J.H.S. Genotyping or analysis: H.Snieder, I.M.N. Study PI: 

B.W.P.

EPIC (MetaboChip): Study phenotyping: R.J.F.L., J.a.L., N.J.W. Genotyping or analysis: 

J.a.L., N.J.W. Study PI: N.J.W., K.-T.K.

ELY: Study phenotyping: C.L., J.a.L., N.J.W. Genotyping or analysis: C.L., J.a.L., N.J.W. 

Study PI: N.J.W.

DIAGEN: Study phenotyping: J.G., G.M. Genotyping or analysis: A.U.J., G.M. Study PI: 

P.E.S., S.R.B.

GOSH: Study phenotyping: P.K.M., N.L.P. Genotyping or analysis: E.I., P.K.M., N.L.P., 

T.Fall Study PI: E.I.

Tromsø: Study phenotyping: T.W. Genotyping or analysis: A.U.J., A.J.S., N. Study PI: I.N.

ADVANCE: Study phenotyping: T.L.A., C.I. Genotyping or analysis: T.L.A., E.L.S., T.Q. 

Study PI: T.L.A., T.Q., C.I.

ULSAM: Study phenotyping: E.I., J.Sundstrom Genotyping or analysis: E.I., N.E., 

J.Sundstrom, A.-C.S. Study PI: J.Sundstrom

PIVUS: Study phenotyping: L.Lind, J.Sundstrom Genotyping or analysis: L.Lind, N.E., 

J.Sundstrom, T.A. Study PI: L.Lind, J.Sundstrom

MRC NSHD: Study phenotyping: D.K. Genotyping or analysis: A.Wong, J.a.L., D.K., 

K.K.O. Study PI: D.K.
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ASCOT: Study phenotyping: A.Stanton, N.P. Genotyping or analysis: T.J., M.J.C., P.B.M. 

Study PI: P.S., M.J.C.

THISEAS: Genotyping or analysis: L.S.R., S.Kanoni, E.M., G.Kolovou Study PI: 

G.Dedoussis, P.D.

PARC: Study phenotyping: R.M.K. Genotyping or analysis: K.D.T., E.Theusch, J.I.R., X.L., 

M.O.G., Y.D.I.C. Study PI: R.M.K.

AMC-PAS: Genotyping or analysis: G.K.H., P.D. Study PI: G.K.H.

CARDIOGENICS: Genotyping or analysis: S.Kanoni, A.H.G. Study PI: P.D., A.H.G., J.E., 

N.J.S., H.Schunkert

Secondary analyses

Allele-specific FAIRE: Design of secondary analysis: A.J.P.S. Computation of secondary 

analysis: A.J.P.S., F.D., P.H.

ASAP eQTL: Design of secondary analysis: A.F.C. Computation of secondary analysis: 

L.Folkersen, P.Eriksson

CARDIOGENICS eQTL: Computation of secondary analysis: L.Lataniotis

CM design: P.B.M., C.N.-C., T.J., B.F.V.

Comprehensive literature review: Design of secondary analysis: P.B.M. Computation of 

secondary analysis: K.W., P.B.M.

DEPICT: Design of secondary analysis: L.Franke, T.H.P., J.N.H. Computation of secondary 

analysis: T.H.P.

DHS and methylation analysis by tissue:Design of secondary analysis: C.J.W. Computation 

of secondary analysis: E.M.S.

DHS and methylation by cell-line: Design of secondary analysis: D.I.C. Computation of 

secondary analysis: D.I.C., F.Giulianini

FHS eSNP: Design of secondary analysis: R.Joehanes Computation of secondary analysis: 

R.Joehanes

ICBP SC: C.N.-C., M.J.C., P.B.M., A.C., K.M.R., P.-O'R., W.P., D.L., M.D.T., B.M.P., 

A.D.J., P.Elliott, C.M.v.D., D.I.C., A.V.S., M.Bochud, L.V.W., H.Snieder, G.B.E.

Kidney eQTL: Computation of secondary analysis: H.J.G., S.K.K.

MAGENTA: Design of secondary analysis: D.I.C. Computation of secondary analysis: 

D.I.C.

Miscellaneous: Computation of secondary analysis: H.Warren
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MuTHER eQTL: Design of secondary analysis: P.D. Computation of secondary analysis: 

L.Lataniotis, T.-P.Y.

NESDA eQTL: Design of secondary analysis: R.Jansen Computation of secondary analysis: 

R.Jansen, A.V.

NTR eQTL: Design of secondary analysis: R.Jansen Computation of secondary analysis: 

R.Jansen, J.-J.H. Study PI: D.I.B.

eQTL, EGCUT:Design of secondary analysis: A.Metspalu Computation of secondary 

analysis: T.E., A.Metspalu

eQTL, Groningen:Design of secondary analysis: L.Franke Computation of secondary 

analysis: H.J.W., L.Franke

Public eSNP and methylation: Design of secondary analysis: A.D.J., J.D.E. Computation of 

secondary analysis: A.D.J., J.D.E.

PubMed search: Design of secondary analysis: G.B.E. Computation of secondary analysis: 

G.B.E., L.Lin

WGHS conditional: Design of secondary analysis: D.I.C. Computation of secondary 

analysis: D.I.C., F.Giulianini, L.M.R.

Lookup of Cardio-MetaboChip variants

HEXA: Genotyping or analysis: Y.J.K., Y.K.K., Y.-A.S. Study PI: J.-Y.L.

RACe: Study phenotyping: D.Saleheen, W.Zhao, A.R., A.R. Genotyping or analysis: 

W.Zhao, A.R., A.R. Study PI: D.Saleheen

HALST: Study phenotyping: C.A.H. Genotyping or analysis: J.I.R., Y.-D.C., C.A.H., R.-

H.C., I.-S.C. Study PI: C.A.H.

CLHNS: Study phenotyping: N.R.L., L.S.A. Genotyping or analysis: Y.W., N.R.L., L.S.A. 

Study PI: K.L.M., L.S.A.

GxE/Spanish Town: Study phenotyping: B.O.T., C.A.M., R.W. Genotyping or analysis: 

C.D.P. Study PI: R.S.C., C.A.M., R.W., T.Forrester, J.N.H.

DRAGON: Study phenotyping: W.-J.L., W.H.-H.S., K.-W.L., I-Te Lee Genotyping or 

analysis: J.I.R., Y.-D.C., E.K., D.A., K.D.T., X.G. Study PI: W.H.-H.S.

SEY: Study phenotyping: P.B. Genotyping or analysis: M.Bochud, G.B.E., F.M. Study PI: 

P.B., M.Bochud, M.Burnier, F.P.

TUDR: Study phenotyping: W.H.-H.S., I-Te Lee, W.-J.L. Genotyping or analysis: J.I.R., Y.-

D.C., E.K., K.D.T., X.G. Study PI: W.H.-H.S.
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TANDEM: Study phenotyping: P.B., M.Bochud Genotyping or analysis: G.B.E., F.M. Study 

PI: P.B., M.Bochud, M.Burnier, F.P.

Imputed genotypes

FHS: Study phenotyping: D.L. Genotyping or analysis: D.L. Study PI: D.L.

ARIC: Study phenotyping: E.B. Genotyping or analysis: G.B.E., E.B., A.C.M., A.C., S.K.G. 

Study PI: E.B., A.C.

RS: Genotyping or analysis: G.C.V., A.G.U. Study PI: A.Hofman, A.G.U., O.H.F.D.

CoLaus: Study phenotyping: P.V. Genotyping or analysis: Z.K. Study PI: P.V.

NFBC1966: Study phenotyping: M.R.J. Genotyping or analysis: P.O.R. Study PI: M.R.J.

SHIP: Study phenotyping: R.Rettig Genotyping or analysis: A.T.

CHS: Study phenotyping: B.M.P. Genotyping or analysis: K.M.R. Study PI: B.M.P.

EPIC (GWAS): Study phenotyping: N.J.W., R.J.F.L., J.a.L. Genotyping or analysis: N.J.W., 

J.H.Z., J.a.L. Study PI: N.J.W., K.-T.K.

SU.VI.MAX: Study phenotyping: S.H. Genotyping or analysis: S.H., P.M. Study PI: P.M.

Amish: Genotyping or analysis: M.E.M. Study PI: A.Parsa

FENLAND (GWAS): Study phenotyping: N.J.W., J.a.L., R.J.F.L., K.K.O. Genotyping or 

analysis: N.J.W., J.a.L., R.J.F.L., K.K.O. Study PI: N.J.W.

DGI: Study phenotyping: C.N.C. Genotyping or analysis: C.N.C., G.Kosova Study PI: 

C.N.C.

ERF (EUROSPAN): Genotyping or analysis: N.A. Study PI: C.M.v.D.

MIGEN: Study phenotyping: S.Kathiresan, R.E. Genotyping or analysis: S.Kathiresan, R.E. 

Design of secondary analysis: S.Kathiresan, R.E.

MICROS: Study phenotyping: P.P.P. Genotyping or analysis: A.A.H. Study PI: A.A.H., 

P.P.P.

FUSION: Genotyping or analysis: A.U.J. Study PI: M.Boehnke, F.S.C., K.L.M., J.Saramies

TwinsUK: Genotyping or analysis: C.M. Study PI: T.D.S.

PROCARDIS: Genotyping or analysis: M.Farrall, A.G. Study PI: M.Farrall

BLSA: Study phenotyping: L.Ferrucci Genotyping or analysis: T.T. Study PI: L.Ferrucci

ORCADES: Study phenotyping: J.F.W. Study PI: J.F.W.
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Croatia-Vis: Genotyping or analysis: V.V., C.H. Study PI: V.V., C.H.

NSPHS: Genotyping or analysis: S.Enroth Study PI: U.G.

InCHIANTI: Genotyping or analysis: T.T. Study PI: S.Bandinelli

AGES Reykjavik: Study phenotyping: V.G. Genotyping or analysis: A.V.S. Study PI: V.G.

Lookup

CARDIoGRAMplusC4D: Genotyping or analysis: P.D. Study PI: J.Danesh, H.Schunkert, 

T.L.A., J.E., S.Kathiresan, R.Roberts, N.J.S., P.D.

CHARGE cIMT: Genotyping or analysis: C.O'D., J.C.B.

CHARGE EYE: Genotyping or analysis: T.Y.W., X.S., R.A.J. Study PI: T.Y.W.

CHARGE-HF consortium: Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., 

J.F.F. Study PI: R.S.V.

CKDGen: Genotyping or analysis: M.G., V.M.

COGENT: Study phenotyping: N.F., J.R. Genotyping or analysis: N.F., X.Z., B.J.K., B.O.T., 

J.R.

EchoGen consortium: Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., J.F.F. 

Study PI: R.S.V.

KidneyGen Consortium: Study phenotyping: J.C.C., J.S.K., P.Elliott Genotyping or analysis: 

W.Zhang, J.C.C., J.S.K. Study PI: J.C.C., J.S.K.

MetaStroke: Genotyping or analysis: S.Bevan, H.S.M.

NeuroCHARGE: Genotyping or analysis: M.Fornage, M.A.I. Study PI: M.A.I.

PROMIS: Study phenotyping: D.Saleheen, W.Zhao, J.Danesh Genotyping or analysis: 

W.Zhao Study PI: D.Saleheen

SEED: Study phenotyping: T.Y.W., C.-Y.C. Genotyping or analysis: E.-S.T, C.-Y.C., C.-Y.C. 

Study PI: C.-Y.C., T.Y.W.

UK Biobank: BP group leaders: Mark Caulfield, P.Elliott Genotyping or analysis: M.R.B., 

H.Warren, Claudia Cabrera, Evangelos Evangelou, He Gao.
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SUMMARY STATISTICS

Full summary statistics (P values) are in the online version of the paper (file 

“ICBPCMfinalMeta.csv.zip”).
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Figure 1. Manhattan plots for SBP and DBP from the stage 4 Cardio-MetaboChip-wide meta-
analysis
P values (expressed as -log10P) are plotted by physical genomic position labeled by 

chromosome. SNPs in new loci (3.5MB window around the index SNP), identified in this 

study, are labeled in dark red (SBP) or dark blue (DBP); SNPs in previously known loci are 

labeled in orange (SBP) or light blue (DBP). The locus names are indicated. The grey 

crosses indicate genomic positions at which the y-axis was truncated (SNPs with P < 10−15).
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Figure 2. Enrichment of DNAse hypersensitive sites among BP loci in different cell-types
Enrichment analyses of SBP or DBP associated loci according to discovery P value using 

narrow peaks (panel A) or broad peaks (panel B). SNPs were selected according to different 

P value cutoffs (x-axis) and a fold enrichment of overlap with DNAse hypersensitive sites 

compared to unrelated GWAS SNPs was calculated (y-axis) (see Supplementary Note). 

The 12 endothelial cell-lines are indicated in color and for each endothelial cell-type the 

rank using the 10−14 P value cutoff is indicated. EC denotes endothelial cells.
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Table 2

Overview of novel and known BP variant properties.

17 new loci 49 established loci 66 loci

Minor allele frequency (mean, range) 32.1% [5%-50%] 28.9% [7%-49%] 29.8% [5%-50%]

Effect size SBP [mmHg] (range, mean) 0.09-0.59, 0.34 0.07-1.13, 0.5 0.07-1.13, 0.46

Effect size DBP [mmHg] (range, mean) 0.1-0.46, 0.23 0.06-0.60, 0.3 0.06-0.6, 0.28

Variance explained SBP 0.52% 2.95% 3.46%

Variance explained DBP 0.58% 2.78% 3.36%

Key characteristics of the novel and established BP loci are shown. MAF and effect size estimates are derived from the Cardio-MetaboChip data. 
Variance explained estimates are estimated from one large study (Supplementary Note). Novel loci are classified as previously unknown to be 
linked to BP by a systematic PubMed review of all genes in a 200kb window (Supplementary Note).
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