569 research outputs found

    Revealing mammalian evolutionary relationships by comparative analysis of gene clusters

    Get PDF
    Many software tools for comparative analysis of genomic sequence data have been released in recent decades. Despite this, it remains challenging to determine evolutionary relationships in gene clusters due to their complex histories involving duplications, deletions, inversions, and conversions. One concept describing these relationships is orthology. Orthologs derive from a common ancestor by speciation, in contrast to paralogs, which derive from duplication. Discriminating orthologs from paralogs is a necessary step in most multispecies sequence analyses, but doing so accurately is impeded by the occurrence of gene conversion events. We propose a refined method of orthology assignment based on two paradigms for interpreting its definition: by genomic context or by sequence content. X-orthology (based on context) traces orthology resulting from speciation and duplication only, while N-orthology (based on content) includes the influence of conversion events

    Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae)

    Get PDF
    The understanding of Earth’s biodiversity depends critically on the accurate identification and nomenclature of species. Many species were described centuries ago, and in a surprising number of cases their nomenclature or type material remain unclear or inconsistent. A prime example is provided by Elephas maximus, one of the most iconic and well-known mammalian species, described and named by Linnaeus (1758) and today designating the Asian elephant. We used morphological, ancient DNA (aDNA), and high-throughput ancient proteomic analyses to demonstrate that a widely discussed syntype specimen of E. maximus, a complete foetus preserved in ethanol, is actually an African elephant, genus Loxodonta. We further discovered that an additional E. maximus syntype, mentioned in a description by John Ray (1693) cited by Linnaeus, has been preserved as an almost complete skeleton at the Natural History Museum of the University of Florence. Having confirmed its identity as an Asian elephant through both morphological and ancient DNA analyses, we designate this specimen as the lectotype of E. maximus

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    A genetic algorithm for resizing and sampling reduction of non-stationary soil chemical attributes optimizing spatial prediction

    Get PDF
    Aim of study: To evaluate the influence of the parameters of the geostatistical model and the initial sample configuration used in the optimization process; and to propose and evaluate the resizing of a sample configuration, reducing its sample size, for simulated data and for the study of the spatial variability of soil chemical attributes under a non-stationary with drift process from a commercial soybean cultivation area.Area of study: Cascavel, BrazilMaterial and methods: For both, the simulated data and the soil chemical attributes, the Genetic Algorithm was used for sample resizing, maximizing the overall accuracy measure.Main results: The results obtained from the simulated data showed that the practical range did not influence in a relevant way the optimization process. Moreover, the local variations, such as variance or sampling errors (nugget effect), had a direct relationship with the reduction of the sample size, mainly for the smaller nugget effect. For the soil chemical attributes, the Genetic Algorithm was efficient in resizing the sampling configuration, since it generated sampling configurations with 30 to 35 points, corresponding to 29.41% to 34.31% of the initial configuration, respectively. In addition, comparing the optimized and initial configurations, similarities were obtained regarding spatial dependence structure and characterization of spatial variability of soil chemical attributes in the study area.Research highlights: The optimization process showed that it is possible to reduce the sample size, allowing for lesser financial investments with data collection and laboratory analysis of soil samples in future experiments

    Sampling redesign of soil penetration resistance in spatial t-Student models

    Get PDF
     Aim of study: To reduce the sample size in an agricultural area of 167.35 hectares, cultivated with soybean, to analyze the spatial dependence of soil penetration resistance (SPR) with outliers.Area of study: Cascavel, BrazilMaterial and methods: The reduction of sample size was made by the univariate effective sample size ( ) methodology, assuming that the t-Student model represents the probability distribution of SPR.Main results: The radius and the intensity of spatial dependence have an inverse relationship with the estimated value of the . For the depths of SPR with spatial dependence, the highest estimated value of the  reduced the sample size by 40%. From the new sample size, the sampling redesign was performed. The accuracy indexes showed differences between the thematic maps with the original and reduced sampling designs. However, the lowest values of the standard error in the parameters of the spatial dependence structure evidenced that the new sampling design was appropriate. Besides, models of semivariance function were efficiently estimated, which allowed identifying the existence of spatial dependence in all depth of SPR.Research highlights: The sample size was reduced by 40%, allowing for lesser financial investments with data collection and laboratory analysis of soil samples in the next mappings in the agricultural area. The spatial t-Student model was able to reduce the influence of outliers in the spatial dependence structure
    corecore