
A genetic algorithm for resizing and sampling reduction  
of non-stationary soil chemical attributes optimizing spatial prediction 

Tamara C. Maltauro, Luciana P. C. Guedes, Miguel A. Uribe-Opazo and Letícia E. D. Canton
Western Paraná State University (UNIOESTE), 2069 Universitária Street, 85819-110 Cascavel, Paraná, Brazil.

Abstract
Aim of study: To evaluate the influence of the parameters of the geostatistical model and the initial sample configuration used in the 

optimization process; and to propose and evaluate the resizing of a sample configuration, reducing its sample size, for simulated data and 
for the study of the spatial variability of soil chemical attributes under a non-stationary with drift process from a commercial soybean cul-
tivation area.

Area of study: Cascavel, Brazil
Material and methods: For both, the simulated data and the soil chemical attributes, the Genetic Algorithm was used for sample resizing, 

maximizing the overall accuracy measure.
Main results: The results obtained from the simulated data showed that the practical range did not influence in a relevant way the 

optimization process. Moreover, the local variations, such as variance or sampling errors (nugget effect), had a direct relationship with 
the reduction of the sample size, mainly for the smaller nugget effect. For the soil chemical attributes, the Genetic Algorithm was effi-
cient in resizing the sampling configuration, since it generated sampling configurations with 30 to 35 points, corresponding to 29.41% 
to 34.31% of the initial configuration, respectively. In addition, comparing the optimized and initial configurations, similarities were 
obtained regarding spatial dependence structure and characterization of spatial variability of soil chemical attributes in the study area.

Research highlights: The optimization process showed that it is possible to reduce the sample size, allowing for lesser financial invest-
ments with data collection and laboratory analysis of soil samples in future experiments.
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Introduction
Precision agriculture differs from traditional agri-

culture for allowing the localized application of inputs, 
according to the needs of the soil in each location, thus 
avoiding environmental risks and high costs to the produ-
cer, and also enabling an optimal development of the crop 
(Inamasu et al., 2011).

In agriculture, the interaction between the soil che-
mical attributes directly affects the growth and de-
velopment of crops (Dalmago et al., 2014). Thereby,  
studying the spatial variability of soil chemical attribu-
tes and cultures, represented by continuous georeferen-
ced variables in a cultivated area, is pointed out as the 
basic principle for precise management in agricultural 
areas, at any scale, thus strengthening the concepts of 
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sustainable agriculture (Nanni et al., 2011; Grzegozewski  
et al., 2013).

For the spatial variability analysis of soil chemical at-
tributes, the sampling configuration and the sample size 
are factors that must be carefully defined, since the num-
ber of soil samples used for the spatial variability analysis 
by geostatistical techniques is directly linked to the costs 
for experimenting (Catapatti et al., 2008; Cressie, 2015). 
Therefore, in an experiment involving the spatial varia-
bility analysis, it is essential to define a sampling confi-
guration that has an adequate sample size, which allows 
minimizing operational costs and maximizing quality of 
the spatial prediction results (Di et al., 1989; Siqueira et 
al., 2014).

Thus, the sampling scheme is essential in the investi-
gation of the spatial variability of soil properties in Soil 
Science studies. However, insufficient sampling intensity 
can be an important limiting factor for precision agricul-
ture and has been the subject of several studies (Monta-
nari et al., 2012).

A traditional sampling methodology can determine 
the reduced sampling configuration. Using systematic 
sampling, Kestring et al. (2015) compared different sam-
ple sizes to verify whether the sample density between 
points showed interference in the estimates of the para-
meters of the model that defines the structure of spatial 
variability, as well as in the estimation of values in uns-
ampled locations of soybean productivity. These authors 
concluded that maps generated with a mean reduction of 
66% of the study area did not generate satisfactory va-
lues for the similarity measure Overall Accuracy (OA).  
However, Ribeiro et al. (2016) analyzed the impact from 
different sample designs on the results of spatial infe-
rence by Ordinary Kriging, applying the techniques of 
simple random sampling, systematic sampling, and stra-
tified sampling. These authors concluded that a gradual 
reduction in the initial sample size (≈ 87%) did not change  
the inference result. 

Another methodology for reducing the sample size is 
the calculation of the effective sample size (ESS) (Griffith, 
2005; Vallejos & Osorio, 2014). The ESS considers the 
spatial dependence structure of the variable to calculate 
the effect of spatial autocorrelation between the sampled 
points collected. In this way, the sample size is reduced by 
removing redundant information.

The choice of a configuration and an efficient sample 
size can also be an optimization problem based on three 
elements: the contained information of a known sampling, 
the choice of a search criterion or method, as well of an 
objective function that expresses optimization efficiency. 
This objective function is minimized or maximized, ac-
cording to the aim of the problem (Linden, 2012). The 
objective functions can consider spatial prediction effi-
ciency (Ferreyra et al., 2002; Nunes et al., 2006; Guedes 
et al., 2014); other measures associated with the efficien-

cy of the prediction (Ferreyra et al., 2002; Guedes et al., 
2011; Szatmári et al., 2018) and some measures compare 
maps (Guedes et al., 2014). However, the efficiency of the 
geostatistical model estimation can still be considered in 
the optimization process, such as the objective function 
based on the inverse-Fisher information matrix (Zhu & 
Stein, 2005; Maltauro et al., 2019). In addition, there are 
mixed objective functions, which consider more than one 
parameter in the optimization process (Yang et al., 2006).

There are several search methods, which can be con-
ducted by studying all possible combinations of solutions 
or by sequential search methods (Santos et al., 2011). 
However, these methods, for large samples, become ex-
haustive and computationally unviable. Thus, another 
alternative is the meta-heuristic methodologies used in 
artificial intelligence, such as Simulated Annealing (SA) 
(Guedes et al., 2014) and the Genetic Algorithm (GA) 
(Maltauro et al., 2019). Specifically, the GA is a technique 
inspired by the natural evolution of species and consists 
of an iterative process of searching for the optimal solu-
tion (Linden, 2012).

The GA shows a great advantage in solving a com-
binatorial optimization problem, given its characteristic 
that has high efficiency and suitability for the practical 
application, mainly for tackling problems with extremely 
large search spaces. This is because this algorithm does 
not use a completely random search method, is capable 
of handling many types of functions, and operates in a 
space of coded solutions. In addition, this method works 
with the concept of population with possible solutions, 
unlike other methods that consider only one solution, and 
only needs information about the objective function value 
for each solution of the population. Thus, a population of 
adapted solutions reduces the possibility of reaching a fal-
se optimum (Min & Cheng, 1999; Linden, 2012). 

Sexton et al. (1999), Min & Cheng (1999) and Guedes 
et al. (2011) concluded that the GA obtains superior so-
lutions to SA for optimizing neural networks; for a larger 
scale identical parallel machine scheduling problem for 
minimizing the makespan; and in a problem of choosing 
the spatial sampling configuration.

The stationary hypothesis is a usual assumption in 
Geostatistics. The stationarity assumption can refer to 
a constant mean, homoscedasticity of variance, and a 
fixed probability distribution function within the domain 
(Manchuck & Deutsch, 2012). Non-stationary processes 
in the mean have been applied in Geostatistics for many 
years. In fact, Universal Kriging involves an unknown, 
but not stationary mean. More commonly, where the local 
mean value varies with the location, it can be modeled 
with a trend (Atkinson & Lloyd, 2007), or with a drift 
(Manchuck & Deutsch, 2012), by the explicit and impli-
cit trend modeling techniques. An implicit technique is to 
directly consider a function that expresses the mean in the 
geostatistical model, while the explicit technique is, for 
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example, the estimation of the trend by least squares and 
the use of residues in geostatistical modeling (Manchuck 
& Deutsch, 2012).

Machuca-Mory & Deutsch (2013) considered a techni-
que that assumes local stationarity through an integrated 
approach to incorporate local changes in the cumulative 
distribution function and all necessary statistics, conclu-
ding that the resulting maps are rich in non-stationary 
spatial features. This technique requires higher computa-
tional effort but, if data availability allows for a reliable 
inference of the local distributions and statistics, higher 
accuracy of the estimates can be achieved.

Studies developed by Sexton et al. (1999), Min & 
Cheng (1999), and Guedes et al. (2011, 2014) use sta-
tionary georeferenced variables in their development. 
However, stationarity is not a characteristic always iden-
tified in soil chemical attributes (Szatmari et al., 2018). 
The assumption of the non-stationary with drift process 
is considered, for example, in a study by Maltauro et al. 
(2019), using an objective function of the efficiency in 
estimating the geostatistical model. Nevertheless, there 
are no studies about the optimization of configuration and 
sample size that consider the absence of stationarity and 
the efficiency of spatial prediction as well.

In this way, the objective of the study was to evaluate 
the influence of the parameters of the geostatistical model 
and the initial sample configuration used in the optimiza-
tion process; and to propose and evaluate the resizing of 
a sample configuration, reducing its sample size, for si-
mulated data and for the study of the spatial variability of 
soil chemical attributes under a non-stationary with drift 
process from a commercial soybean cultivation area, to 
resize the sampling for future experiments.

Material and methods
Simulation study

Firstly, a simulation study was carried out to reproduce 
a set of possibilities existing in the real data to be eva-
luated in this study (Shiflet & Shiflet, 2014), as well as 
to improve the theoretical and practical knowledge about 
size optimization and the sampling configuration in soil 
chemical attributes, with a non-stationary spatial depen-
dence structure (Cressie, 2015).

Thus, the simulated data sets were obtained through 
Monte Carlo simulations, using Cholesky decomposition 
(Cressie, 2015). These sets represent realizations of sto-
chastic processes {𝑍𝑍(𝑠𝑠𝑖𝑖), 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆} , where 𝑠𝑠𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

𝑇𝑇
  

is the vector that represents a particular location in the 
study area, with 𝑆𝑆 ⊂ 𝑅𝑅2 , where R2 is the two-dimensional 
Euclidean space (Mardia & Marshall, 1984). Supposing 
that the  Z(s1),…,Z(sn) data of this process are observa-
tions of the random variable under study at si (i = 1,…,n) 

known spatial locations and, generated by the Gaussian 
linear spatial model given in matrix notation by Eq. 1 
(Uribe-Opazo et al., 2012):

𝑍𝑍 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀,                                (1)

where Xβ is the deterministic term and ε is the stochas-
tic term; such that both depend on the spatial location in 
which Z(si); ZNn (Xβ,∑) is observed, the random error 
vector ε has E(ε)=0 (null vector, n × 1) and the covariance 
matrix ∑[(σij)] , n × n, with σij = C(si,sj) i, j = 1,...,n (Mar-
dia & Mashall, 1984).

In this study, the georeferenced variable was conside-
red non-stationary (due to the fact that the real data are 
non-stationary in the mean), and the deterministic term 
that represents the mean vector μ = Xβ, n ×1, is a directio-
nal trend of the georeferenced variable, in which a linear 
trend of the increase was pre-defined of the mean value in 
the North direction, that is, the process mean value equals 
to μ = β0 + β1y, where βo and β1 are unknown parameters 
and need to be estimated, y represents the directional trend 
identified, and X (n × ( p + 1)) is a complete station design 
matrix, whose i-th row is given by 𝑥𝑥𝑖𝑖𝑇𝑇 = (1, 𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) , 
and xil = xl (si), where i = 1,…,n;l = 1,…,p represents the 
value of the l-th covariate taken in the n-th position (Cres-
sie, 2015).

In addition, we have that ∑ is the non-singular cova-
riance matrix (Uribe-Opazo et al., 2012), given by Eq. 2:

∑  = 𝜑𝜑1𝐼𝐼𝑛𝑛 + 𝜑𝜑2𝑅𝑅(𝜑𝜑3),                          (2)

where 𝜑𝜑1  ≥ 0 is the nugget effect; In is the n × n identity 
matrix; 𝜑𝜑2  ≥ 0 is the contribution or the dispersion va-
riance; 𝜑𝜑3  > 0 is s the range function of the model, the 
practical range (𝑎𝑎 = 𝑔𝑔(𝜑𝜑3) ) is the limit distance of spatial 
dependence (Cressie, 2015), and R(𝜑𝜑3 ) is an n × n matrix 
which is a function of 𝜑𝜑3  , where R(𝜑𝜑3 ) = [(rij)] a symme-
tric n × n matrix, where rij depends only on the Euclidean 
distance between si and sj (hij = ‖si - sj ‖), with diagonal 
elements rij = 1; for i = j, rij=𝜑𝜑2−1𝐶𝐶 (si, sj) for 𝜑𝜑2 ≠ 0 and 
i ≠ j; and rij = 0 for 𝜑𝜑2 = 0, i ≠ j(i, j = 1,…,n) (De Bastiani 
et al., 2015).

For each sampling configuration, nine trials were con-
sidered (Fig. 1). In each trial, the simulations were perfor-
med considering the Gaussian spatial linear model (Eq. 
1), and an exponential model (simple model and with 
good estimation; Cressie, 2015) to define the covarian-
ce, considering a combination of the parameter values of 
the Gaussian spatial linear model (Fig. 1), and the choi-
ce of these parameters to contemplated different intensi-
ties of spatial dependence (weak, moderate and strong; 
Cambardella et al., 1994), as for the relative nugget effect 
(𝐸𝐸 = 𝜑𝜑1

𝜑𝜑1 + 𝜑𝜑2
) , and as for the practical range (a).

The methodological scheme occurred in two phases, 
the external and the internal phase. The external phase 
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begins with an established sample size - while the optimi-
zation of this size is also sought - and aims to carry out a 
sampling plan in this sample size.

In the internal phase the GA optimization process that 
considered the established sample size in the external 
phase took place. At each iteration of the GA, the algo-
rithm seeks changes in its individuals (each individual is 
a sampling configuration, with a fixed size by the general 
optimization process), searching for an improvement in 
the objective function (maximizing OA; Cressie, 2015).

The optimized sampling configuration does not follow 
a traditional sampling pattern. However, the points cho-
sen in the optimization process belong to the initial sam-
pling configuration. Fig. 1 shows the entire simulation 
study scheme, as well as the optimization process, mainly 
the description of the external phase.

The objective function was the similarity measure  
called OA (Anderson et al., 2001), calculated for each in-
dividual in the population according to Eq. 3. This measu-

re compares the predicted values obtained by the initials 
and optimizes configurations, through the error matrix, 
whose unit of measure is the pixel. Each element of this 
matrix represents the total number of pixels or the total 
area belonging to class k of the model map and class l of 
the reference map. In this case, in the geostatistical analy-
sis, the elaboration of the model map and the reference 
map considered the initial sampling configuration and the 
optimized sampling configuration, respectively.

𝑂𝑂𝑂𝑂 =
∑ 𝑛𝑛𝑘𝑘𝑘𝑘

𝑡𝑡
𝑘𝑘=1

𝑁𝑁 ,                            (3)

where nkk are the main diagonal elements of the error 
matrix, which represent the number of pixels that had 
the same classification for the two maps compared; t is 
the number of classes, and N is the total pixels or the  
total area.

We applied the GA successively until the sample op-
timized by the algorithm reached the minimum value 

 
Figure 1. Methodological scheme for the choice of a configuration and a sample size.
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of OA equal to 0.85 because OA values ≥ 0.85 indicate  
similarity between the maps that were prepared conside-
ring the two sampling configurations (Anderson et al., 
2001). The flowchart shown in Fig. 2 exemplifies the GA 
optimization process. And, at the end of this optimization 
process, the optimized sampling configuration of reduced 
size was obtained.

Practical study

The data set used in this research refers to a com-
mercial area of soy production with 167.35 ha, in which 
precision agriculture is developed, with the localized 
application of inputs. The area consists of 102 sample 
points, located at Fazenda Agassiz in Cascavel (PR, 
Brazil), which has approximated geographic coordina-
tes of 24.95° S and 53.57° W, and an average elevation 
of 650 m (Fig. 3). The soil is dystrophic Red Latosol, 
with a clay texture. The climate in the region is meso-
thermal and super-humid temperate, climatic type Cfa 
(Koeppen) and the average annual temperature is 21º C 
(Embrapa, 2013). The data belongs to the database of the 
Laboratory of Spatial Statistics and the Laboratory of 
Applied Statistics of the Western Paraná State Universi-
ty (UNIOESTE), Cascavel/Brazil.

The defined sampling configuration in this area was  
lattice plus close pairs (k × k, m, δ), being that it con-
sists of a regular k × k grid with Δ spacing adding other 
m points, each of which are located uniformly at ran-
dom within a circumference of radius δ, whose cen-
ter is always at a randomly selected grid point (Chi-
peta et al., 2017). These designs contained a regular 
grid, with a minimum distance between regular grid 
points of 141 m, and in some randomly selected places 
of this regular grid, we added 19 sample points, with 
smaller distances with the regular grid (75 m and 50 
m between pairs of points) (Fig. 3). The samples were 
located and georeferenced by a Global Positioning 
System (GPS) signal receiver in a WGS84Datum coor-
dinate system, UTM (Universal Transverse Mercator)  
projection.

In addition to the organic macronutrients provi-
ded by the atmosphere, soy needs nutrients provi-
ded by the soil for optimal crop development. The 
following soil chemical attributes, observed in the 
2010/2011 cropping season and that showed spatial 
dependence and non-stationary were studied: cal-
cium (Ca, cmolc dm−3), carbon (C, g dm−3), copper 
(Cu, cmolc dm−3), manganese content (Mn, cmolc 
dm−3), and pH. The analysis of these chemical attri-
butes of the soil is important because imbalance of 

 
Figure 2. Methodological scheme for the application of the Genetic Algorithm (GA) 
for the choice of a configuration and a sample size.
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the content of these attributes in the soil can modify 
the growth and development phases of the plant, thus  
affecting the grain and, consequently, the soybean pro-
ductivity (Taiz et al., 2017).

Soil sampling, to determine the levels of soil chemi-
cal attributes, was performed at each demarcated point 
(Fig. 3). In these, four soil subsamples (Filizola et al., 
2006) were collected near these points at a depth of 0.0 
to 0.2 m (Arruda et al., 2014), mixed and stored in plas-
tic bags, with samples of approximately 500 g (Alloway, 
1995), thus composing the representativeness of the plot, 
in which the values of micronutrients Cu and Mn were 
extracted by the Mehlich-1 method, C by Walkley Black, 
Ca by 1 mol L-1 KCI, and pH by CaCl 1:2.5 (w/v), in the 
Laboratory of the Central Agricultural Research Coopera-
tive (COODETEC), Cascavel-PR, Brazil.

Descriptive and geostatistical analyses were performed 
for each soil chemical attribute. The existence of anisotropy, 
using the non-parametric test by Maity & Sherman (2012), 
was evaluated at a 5% significance level. The non-stationa-
rity of the data was verified by Pearson's linear correlation 
coefficients between the soil chemical attributes with the 
X-axis and Y-axis coordinates, indicating the presence of 
directional trend (Callegari-Jacques, 2003).

Afterward, models of the semivariance function were 
estimated by the maximum likelihood method (Cressie, 
2015) considering the following models: exponential, 
Gaussian, and the Matérn family with shape parameter  
k = 1, 1.5, and 2 (Uribe-Opazo et al., 2012). The cross-va-
lidation technique selected the best model (Faraco et al., 
2008). Subsequently, the spatial prediction by kriging 
of each soil chemical attribute was carried out in a grid 
of non-sampled locations in the agricultural area under 
study, in a fine grid (5 m in 5 m); and thematic maps of 
the estimated values of each attribute were constructed 
(Cressie, 2015).

Subsequently, for each soil chemical attribute, the GA 
was applied in the same way and with the same criteria 
applied in the simulations. At the end of the optimization 
process and for each soil chemical attribute, a small sample 
size configuration was obtained. And for this new sampling 
configuration, descriptive and geostatistical analyses were 
carried out again. For each of the attributes, to compare the 
thematic maps generated by the geostatistical analysis, con-
sidering the initial and optimized sampling configurations, 
the OA similarity measure and the Kappa (Kp) and Tau (T) 
agreement indexes were calculated (Krippendorff, 2013).

Simulations, GA routines, and statistical and geostatis-
tical analyses were performed in the R software (R Deve-
lopment Core Team, 2021) using the geoR (Ribeiro Jr &  
Diggle 2001) and sm (Bowman & Azzalini, 2015) packages.

Results
Simulation study

For all simulations performed in all sampling confi-
gurations (Tables S1 to S3), at the end of the optimiza-
tion process, on average, the minimum and maximum OA 
values in the populations are very close. The estimated 
OA value, obtained at the end of the optimization, did not  
suffer a relevant influence due to the variation of the  
nugget effect and practical range parameters, which ran-
ged from 0.8606 to 0.8652. This fact was a consequence 
of the GA stopping criterion, which stops the optimization 
process when the estimated OA value is greater than or 
equal to 0.85 (Tables S1 to S3).

These results indicate that the search space for the pro-
cess solution was reduced by a few values at the end of 
the optimization process, indicating that the optimization 
process was efficient and stable.

 
Figure 3. Map of the location of the study area and the sampling configuration.
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At the end of the process, there was a low standard 
deviation value for the estimated OA value. There was 
also, on average, a relevant increase in OA ranging from 
44.42% to 90.35%, compared to the beginning and the 
end of the optimization process (Tables S1 to S3).

For all the trials and simulated sampling configu-
rations, the best small sampling configurations pre-
sented, on average, results between 34 and 53 points 
(Tables S1 to S3). Therefore, there was a mean re-
duction in the number of points, which varied from 
48% to 67%, concerning the initial sampling con-
figuration. In addition, for all simulated sampling 
configurations, the smallest sample size was obtai-
ned with the smallest value for the nugget effect (𝜑𝜑1 
= 0) and the highest practical range (a = 0.90). The  
highest sample size occurred in the simulations perfor-
med with the highest nugget effect value (𝜑𝜑1 = 0.80) 
and the lowest practical range value (a = 0). For almost 
all trials, systematic sampling showed, on average, the  
highest optimized sample size.

Besides, for all simulated sampling, the reduced sam-
ple size showed a direct trend with the nugget effect and 
an inverse trend with the practical range, mainly for the 
smaller nugget effect (Tables S1 to S3). 

Sample resizing considering soil chemical  
attributes

Initially, the commercial area had 102 points. Af-
ter using the GA, there were 35 points for the sampling 
configuration of the soil chemical attributes Ca and Mn 
(corresponding to 34.31% of the number of points in the 
initial sampling configuration) (Table 1), and 30 points for 
the attributes C, Cu, and pH (corresponding to 29.41% of 
the number of points in the initial sampling configuration) 
(Table 1). 

Regarding the variation coefficient, only Mn content 
showed a very high dispersion in both sampling configu-
rations. Ca and Cu contents showed very high dispersion 
only in the optimized sampling configuration (Pimentel 
Gomes, 1985).

In the reduced sample, the Ca, C, Cu, and pH attri-
butes showed the same directional trend behaviors ob-
served in the initial sampling configuration, with values 
close to Pearson's linear correlation coefficient (Table 1), 
presenting a moderate linear association of their respec-
tive values with the Y-axis coordinates (Callegari-Jac-
ques, 2003). Mn content, on the other hand, presented a 
moderate linear association of its respective values with 

Statistic Sampling configuration Ca C Cu Mn pH
n Initial 102 102 102 102 102
Mean 5.20 26.93 2.95 49.32 5.10
Minimum 2.37 19.87 1.10 17.00 4.40
Median 5.08 26.88 2.80 43.00 5.10
Maximum 11.76 34.29 4.90 107.00 6.70
Variance 1.88 10.55 0.68 379.51 0.15
CV (%) 26.41 12.06 27.86 39.50 7.58
Coef. X 0.14 -0.08 -0.08 -0.08 0.14
Coef. Y 0.40 0.36 -0.56 0.59 0.35
n* Optimized 35 30 30 35 30
No. of samples/No. ha 1/5 1/6 1/5 1/5 1/6
Mean 5.17 26.88 3.01 50.94 5.06
Minimum 2.51 20.65 1.10 23.00 4.40
Median 4.93 26.88 2.90 47.00 5.05
Maximum 11.76 33.90 4.70 93.00 5.90
Variance 3.11 11.52 0.87 414.11 0.13
CV (%) 34.09 12.62 31.07 39.95 7.25
Coef. X 0.13 0.06 -0.01 -0.10 0.17
Coef. Y 0.50 0.39 -0.57 0.62 0.45

Table 1. Descriptive statistics and Pearson's linear correlation coefficient of the soil chemical attributes Ca 
[cmolc dm-3], C [g dm-3], Cu [mg dm-3], Mn [cmolc dm-3], and pH, considering the initial and optimized 
sampling configurations.

CV: coefficient of variation. Coef.: coefficient of Pearson's linear correlation between the soil chemical attributes 
and X and Y coordinates. n: initial sample size. n*: number of points obtained by the optimization.
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the Y-axis coordinates for the initial configuration and a 
strong linear association of its respective values with the 
Y-axis coordinates for the reduced sampling configuration 
(Callegari-Jacques, 2003).

In all soil chemical attributes in both sampling confi-
gurations (initial and optimized), the spatial dependence 
structure was isotropic, because it was not possible to re-
ject the null hypothesis isotropy (p>0.05), by the non-pa-
rametric MS isotropy test (Maity & Sherman, 2012).

Spatial dependence expresses the behavior of the 
correlation between observed data, being essential in 
geostatistical analyses. Regarding the intensity of spa-
tial dependence, all soil chemical attributes, and in both 
sampling configurations, identified the presence of spatial 

dependence. The Ca, C, Mn, and pH attributes showed 
moderate spatial dependence, while Cu content showed 
strong spatial dependence (Cambardella et al., 1994) (Ta-
ble 2).

For both sampling configurations (initial and optimi-
zed), the best model of the semivariance function, obtai-
ned by the maximum likelihood method by cross-valida-
tion was the following: the Matérn family model with k = 
2 for Ca and C contents; and the exponential model for the 
Cu, Mn content, and pH attributes (Table 2).

In the initial sampling configuration and the soil che-
mical attributes Ca, C, Cu, Mn, and pH, an estimated va-
lue for the spatial dependence radius (practical range) was 
observed, ranging from 249.14 m to 805.21 m (Table 2). 

Model Sampling configuration
Ca C Cu Mn pH

Matérn k=2 Exp.
𝛽𝛽0 Initial -9,916.96 -21,325.50 6,283.82 -1.7*105 -2,455.07
𝛽𝛽1 0.001 0.003 -0.001 0.023 0.0003
𝜑𝜑1 1.14 4.50 0.09 95.25 0.10

𝜑̂𝜑1 + 𝜑̂𝜑2 1.56 9.08 0.45 241.4 0.13

𝑎𝑎 = 𝑔𝑔(𝜑𝜑3) 249.14 383.47 805.21 453.49 300.96

𝐸𝐸𝐸𝐸𝐸𝐸^  (%) 72.43 49.53 20.71 39.47 73.75

SD ( 𝛽𝛽0 ) 3.0*10-9 1.1*108 4.1*10-9 5.9*10-8 8.7*10-10

SD (𝛽𝛽1 ) 2.1*10-5 7.7*10-5 2.9*10-5 0.00043 6.3*10-6

SD (𝜑𝜑1 ) 0.11223 0.00027 0.06244 8.8*10-5 0.02528

SD (𝜑𝜑2 ) 0.11195 3.9*10-5 0.12878 2.8*10-5 0.02616

SD (a) 0.02242 0.01961 0.14615 0.05603 0.01952

𝛽𝛽0 Optimized -16,370.00 -28,110.00 8,299.05 -1.8*105 -3,346.60
𝛽𝛽1 0.0002 0.004 -0.001 0.025 0.0005
𝜑𝜑1 1.71 3.43 0.09 74.41 0.06

𝜑̂𝜑1 + 𝜑̂𝜑2 2.27 9.16 0.56 247.81 0.10
𝑎𝑎 = 𝑔𝑔(𝜑𝜑3) 311.81 435.15 625.84 579.09 237.42

𝐸𝐸𝐸𝐸𝐸𝐸^  (%) 71.09 37.46 14.30 30.02 54.76

SD ( 𝛽𝛽0 ) 5.5*10-9 1.5*108 4.6*10-9 8.2*10-8 1.2*10-9

SD (𝛽𝛽1 ) 4.0*10-5 0.00011 3.3*10-5 0.00059 8.9*10-6

SD (𝜑𝜑1 ) 0.00169 0.00053 0.07800 0.00019 0.01365

SD (𝜑𝜑2 ) 0.00113 8.6*10-5 0.10143 6.0*10-5 0.01325

SD (a) 0.05742 0.03690 0.12970 0.11130 0.00037

Table 2. Estimated values of the parameters of the best adjusted models, with their respective standard deviations, for the 
soil chemical attributes Ca, C, Cu, Mn, and pH, considering the initial and optimized sampling configuration.

Exp.: exponential model. 𝛽𝛽0 , 𝛽𝛽1 : estimated values of the parameters of the regression model, which explain the mean, where  
μ = β0 + β1 Y1, and Y1 represents the directional trend identified. 𝜑𝜑1 : estimated value of the nugget effect. 𝜑𝜑2 : estimated value of 
the contribution. 𝑎𝑎 : estimated value of the range (m). 𝐸𝐸𝐸𝐸𝐸𝐸^  =𝜑𝜑1 ⁄𝜑𝜑1  +𝜑𝜑2 : estimated value of the relative nugget effect (%).  
𝜑𝜑1 +𝜑𝜑2 : estimated value of the sill. SD: standard deviation.
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While for the referred soil chemical attributes, conside-
ring the optimized sampling configuration, the practical 
range varied from 237.42 m to 625.84 m (Table 2).

For both sampling configurations, the standard devia-
tions of the parameters were estimated. And, for most of 
the soil chemical attributes, there was an increase in the 
estimated standard deviation of the regression model pa-
rameters, which explains the mean. The same happened 
for the nugget effect and practical range. In addition, the-

re was a reduction in the estimated standard deviation of 
the contribution parameter, when comparing the reduced 
sampling configuration with the initial sampling confi-
guration (Table 2). The lower standard deviation of the 
parameters, in relation to its mean, the better the model 
estimative.

The maps constructed using kriging (Fig. 4) for the 
optimized sampling configuration presented visual simi-
larities for all soil chemical attributes when compared to 

 
Figure 4. Thematic maps of soil chemical attributes elaborated considering the initial and optimized sampling 
configuration, where ● represents the location of the selected points in the optimization process for each attri-
bute; the percentage value represents the percentage of pixels with the same classification in each class; and 
estimated values of the Overall Accuracy (OA), Tau (T), and Kappa (Kp) similarity measures.
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the same maps constructed considering the initial sam-
pling configuration. Besides, the highest values of Ca and 
Mn contents were concentrated in the northern region of 
the study area, while that of the Cu content presented a 
concentration of the highest values in the southern region 
(Fig. 4). The soil chemical attributes Ca content and pH 
showed more scattered concentrations around the study 
area (Fig. 4).

For the soil chemical attributes Ca, Cu, Mn, and pH, 
the highest percentage of pixels that had the same classifi-
cation are in class four, with the following respective per-
centages: 56.73%, 32.20%, 51.14%, and 44.88%; while C 
in class five, with 41.04%, presented pixels classified as 
equal in both maps.

In the comparison of the thematic maps generated and 
considering the initial and optimized sampling configura-
tions, the soil chemical attributes Ca, C, Cu, Mn, and pH 
presented estimated OA values from 0.85 to 0.87.

Discussion
Simulation study

For all simulated samplings, the reduced sample size 
showed a direct trend with the nugget effect and an inver-
se trend with the practical range, mainly for the smaller 
nugget effect. This occurs because the nugget effect is as-
sociated with the sampling or analysis errors, which indi-
cate that two observations fairly close together have very 
different values. In addition, a high nugget effect indicates 
a low spatial dependence and leads to estimates around 
the sample mean (Gallardo & Paramá, 2007; Alencar et 
al., 2019).

These results were similar to those obtained by Gue-
des et al. (2011), who determined only the sampling con-
figuration, with a reduced sample size previously fixed, 
studying stationary models. Considering stationary mo-
dels and ESS as a methodology to reduce the sample size, 
Griffith (2005), Vallejos & Osorio (2014), and Dal Canton 
et al. (2021) found similar results on the inverse trend of 
the sample size and the value of the practical range. The 
practical range consists of the spatial dependence radius. 
Because of this, a greater spatial dependence radius im-
plies correlated samples over a longer distance, which 
provides redundant information over a longer distance 
and, consequently, the possibility to use a smaller number 
of samples to explain spatial variability (Griffith, 2005; 
Vallejos & Osorio, 2014).

This shows that results obtained with non-stationary 
data are similar to those obtained considering the stationari-
ty of the data. Atkinson & Lloyd (2007) show that non-sta-
tionary models of the semivariogram can lead to greater 
efficiency in the sampling design, combining sampling 
density with the character of the local spatial variation.

Sample resizing considering soil chemical attri-
butes

In general, the results obtained with the GA indicated 
that there was a greater reduction in the number of sample 
points, when compared to the results obtained in the si-
mulations and in sample resizing with objective function 
also associated with the efficiency of the spatial prediction 
proposed by Guedes et al. (2011; 2014). These authors 
considered a fixed reduced sample size and optimization 
of the sample reduction by the SA algorithm as well and 
obtained a 40%-50% reduction of the initial sampling 
configuration. Thus, this study found a greater sample re-
duction than in similar studies.

On the other hand, the percentage of sample reduction 
observed in this study is similar to those found by Maltau-
ro et al. (2019) optimizing the efficiency of the geostatisti-
cal model estimation, such as the objective function based 
on the inverse-Fisher information matrix; and Domenech 
et al. (2017), who, considering information on auxiliary 
variables, concluded that 30% of the samples of the area 
were already sufficient to obtain efficient thematic maps 
in terms of the representativeness of the spatial variability 
of the soil depth.

There is no consensus in the literature regarding the 
number of samples to be collected per hectare. There are 
studies using grids with a sample every 1 ha or even every 
9 ha (Nanni et al., 2011; Cherubin et al., 2014; Siqueira et 
al., 2014). Thus, the results obtained in this study (Table 
1) are within the variation proposed by the literature.

For each soil chemical attribute, there was similarity 
in the descriptive statistics between the different sample 
sizes (Table 1), indicating that these sampling configura-
tions are similar, concerning the sets of values of the va-
riables. This fact also occurred in Kestring et al. (2015), 
who analyzed different intensities of soil sampling con-
cerning precision in geostatistical analysis and map inter-
polation, for precision agriculture, in areas planted with 
sugar cane and soy, respectively.

Regarding the intensity of spatial dependence, the Ca, 
C, Mn and pH attributes showed moderate spatial depen-
dence, while Cu content showed strong spatial dependen-
ce (Cambardella et al., 1994) (Table 2). This fact makes 
thematic maps more accurate than maps generated with 
weak spatial dependence, all of this since there is a lesser 
contribution of the random component in data variability 
(Di et al., 1989; Kravchenko, 2003).

Both sampling configurations presented an estimated 
value of the spatial dependence radius similar for each 
soil chemical attribute, except for Cu and Mn, which 
showed a greater difference when compared to the spatial 
dependence radius considering the initial sampling confi-
guration, with that, obtained considering the optimized. 
As for the soil chemical attributes Ca, C and Mn, the spa-
tial dependence radius had a slight increase, and a slight 
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decrease for the Cu and pH attributes (13.5% to 27.7%; 
21% to 22.3%, respectively) (Table 2).

The maps elaborated considering both configurations 
are similar in terms of the content distribution of the attri-
butes in the study area (Fig. 4). This fact was also found 
for the simulations and is due to the consequence of the 
algorithm stop criterion (estimated OA value is ≥ 0.85). 
In addition, according to the estimated values of the Kp 
and T concordance indexes, all soil chemical attributes 
presented medium (0.67 ≤ Kp < 0.80) or high (Kp ≥ 0.80) 
accuracy (Krippendorff, 2013), with values estimated  
between 0.72 to 0.82.

The arrangement of the points obtained by the optimi-
zation process (points in red in Fig. 4), in all soil chemical 
attributes, showed that the optimization algorithm chose 
the sampling points of the optimized sampling configu-
ration to select points from each subarea or points next 
to each subarea described by the thematic map of the ini-
tial sampling configuration. In the optimized sampling 
configuration, it is also observed that the corresponding 
number of points in each subarea is related to the propor-
tion that this subarea represents the agricultural area. This 
result showed the concentration of points in the regions 
where there is greater variability, as well as a decrease of 
the sample density in the most uniform places (Grego et 
al., 2014). It is also clear that the soil chemical attributes 
C and pH showed the formation of some small clusters of 
chosen points, but the position of these clusters did not 
follow a trend (Fig. 4).

The algorithm sought a total coverage of the study area, 
that is, it defined a spatial sampling scheme with sam-
ples scattered throughout the study area, showing that the 
sampling scheme tends not to select contiguous samples, 
this being an important fact for general coverage of the 
study area (Fattorini et al., 2015). This fact also occurred 
in a study with sample optimization methodologies, with 
fixed size and based on space coverage, called: space-fi-
lling design (Pronzato, 2017) and cover design (Johnson 
et al., 1990).

Furthermore, a sampling procedure with greater area 
coverage, not considering any optimization process, can 
be obtained through stratified sampling, which in turn 
can consider the division of the area into several hetero-
geneous extracts, although with homogeneous samples 
within each stratum, collecting samples at random within 
each extract (Wang et al., 2012).

The optimization process used in this study showed 
that it is possible to reduce the sample size, with a mi-
nimization of the loss of similarity of the spatial predic-
tion. There are not similar results in the reduction of the 
sample size using traditional sampling methodologies 
such as the systematic sampling used by Kestring et al. 
(2015), whose maps generated with a mean reduction 
of 66% of the study area did not generate satisfactory 
values for OA.
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