195 research outputs found

    DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population.

    Get PDF
    It is well accepted that schizophrenia has a strong genetic component. Several genome-wide association studies (GWASs) of schizophrenia have been published in recent years ; most of them population based with a case-control design. Nevertheless, identifying the specific genetic variants which contribute to susceptibility to the disorder remains a challenging task. A family-based GWAS strategy may be helpful in the identification of schizophrenia susceptibility genes since it is protected against population stratifi- cation, enables better accounting for genotyping errors and is more sensitive for identification of rare variants which have a very low frequency in the general population. In this project we implemented a family-based GWAS of schizophrenia in a sample of 107 Jewish-Israeli families. We found one genome- wide significant association in the intron of the DOCK4 gene (rs2074127, p value=1.134r10 x 7 ) and six additional nominally significant association signals with p<1r10 x 5 . One of the top single nucleotide polymorphisms (p<1r10 x 5 ) which is located in the predicted intron of the CEACAM21 gene was significantly replicated in independent family-based sample of Arab-Israeli origin (rs4803480 : p value=0.002 ; combined p value=9.61r10x8), surviving correction for multiple testing. Both DOCK4 and CEACAM21 are biologically reasonable candidate genes for schizophrenia although generalizability of the association of DOCK4 with schizophrenia should be investigated in further studies. In addition, gene-wide significant associations were found within three schizophrenia candidate genes : PGBD1, RELN and PRODH, replicating previously reported associations. By application of a family-based strategy to GWAS, our study revealed new schizophrenia susceptibility loci in the Jewish-Israeli popu- lation. Received 8 March 2011 ; Reviewed 11 April 2011 ; Revised 19 April 2011 ; Accepted 13 May 201

    Writing in Britain and Ireland, c. 400 to c. 800

    Get PDF
    No abstract available

    Association of the Type 2 Diabetes Mellitus Susceptibility Gene, TCF7L2, with Schizophrenia in an Arab-Israeli Family Sample

    Get PDF
    Many reports in different populations have demonstrated linkage of the 10q24–q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24–q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10−6) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10−6) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest
    • …
    corecore