16 research outputs found

    The impact of large scale licensing examinations in highly developed countries: a systematic review

    Get PDF
    BACKGROUND: To investigate the existing evidence base for the validity of large-scale licensing examinations including their impact. METHODS: Systematic review against a validity framework exploring: Embase (Ovid Medline); Medline (EBSCO); PubMed; Wiley Online; ScienceDirect; and PsychINFO from 2005 to April 2015. All papers were included when they discussed national or large regional (State level) examinations for clinical professionals, linked to examinations in early careers or near the point of graduation, and where success was required to subsequently be able to practice. Using a standardized data extraction form, two independent reviewers extracted study characteristics, with the rest of the team resolving any disagreement. A validity framework was used as developed by the American Educational Research Association, American Psychological Association, and National Council on Measurement in Education to evaluate each paper’s evidence to support or refute the validity of national licensing examinations. RESULTS: 24 published articles provided evidence of validity across the five domains of the validity framework. Most papers (n = 22) provided evidence of national licensing examinations relationships to other variables and their consequential validity. Overall there was evidence that those who do well on earlier or on subsequent examinations also do well on national testing. There is a correlation between NLE performance and some patient outcomes and rates of complaints, but no causal evidence has been established. CONCLUSIONS: The debate around licensure examinations is strong on opinion but weak on validity evidence. This is especially true of the wider claims that licensure examinations improve patient safety and practitioner competence

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Human Stem Cell-Derived Spinal Cord Astrocytes with Defined Mature or Reactive Phenotypes

    Get PDF
    Differentiation of astrocytes from human stem cells has significant potential for analysis of their role in normal brain function and disease, but existing protocols generate only immature astrocytes. Using early neuralization, we generated spinal cord astrocytes from mouse or human embryonic or induced pluripotent stem cells with high efficiency. Remarkably, short exposure to fibroblast growth factor 1 (FGF1) or FGF2 was sufficient to direct these astrocytes selectively toward a mature quiescent phenotype, as judged by both marker expression and functional analysis. In contrast, tumor necrosis factor alpha and interleukin-1β, but not FGFs, induced multiple elements of a reactive inflammatory phenotype but did not affect maturation. These phenotypically defined, scalable populations of spinal cord astrocytes will be important both for studying normal astrocyte function and for modeling human pathological processes in vitro

    INTERFACES IN ORGANIC LIGHT-EMITTING DEVICES

    No full text
    corecore