1,244 research outputs found
Filiera della canapa industriale (Cannabis sativa L.): sfide e nuove opportunità
La Cannabis Sativa è una pianta utilizzata in maniera sempre maggiore in diverse filiere del mercato: agro- alimentare, tessile, edile, cosmetico e della chimica verde, sostituendo prodotti "classici" con nuovi prodotti più performanti dal punto di vista ambientale e tecnologico. La "canapa industriale" ha un contenuto in tetraidriocannabinolo (THC) inferiore allo 0,2%, che ne permette la coltivazione e la commercializzazione in Europa (Reg. CE n.1673/2000 e Reg. CE n.73/2009). Ampiamente coltivata in Italia e nel mondo fino alla metà del secolo scorso, principalmente per ottenerne prodotti da impiegare nell'industria tessile, motivazioni economiche e politiche (Legge 22/12/1975 n.685) ne hanno segnato il declino. Oggi comunque questa coltura sta conoscendo un nuovo periodo di espansione per le caratteristiche e i molteplici usi che la rendono particolarmente vicina ai principi della green economy. In Europa la superficie coltivata ha raggiunto il valore di circa 25.000 ha nel 2016, in crescita del 37% rispetto al 2014. Il ritorno della canapicoltura sta avvenendo su basi completamente diverse rispetto al passato, quando l'unico prodotto vendibile era la fibra lunga, per la creazione di tessuti e cordami, ottenuta attraverso procedimenti che richiedevano enormi impieghi di manodopera. Oggi, dal punto di vista delle possibilità d'impiego, la canapa presenta caratteristiche di versatilità che rendono questa materia prima utilizzabile in molti settori per le sue proprietà: produzione di carta (la canapa ha una resa in polpa per ettaro 4 volte superiore rispetto al legno, oltre a richiedere 1/7 del quantitativo di solventi chimici), industria chimica, industria alimentare (attraverso l'impiego di olio e farine ricavate dai semi della canapa) e produzione di energia pulita. Inoltre è importante ricordare la capacità fitodepuratrice della canapa (già sfruttata nel nostro Paese per il recupero dell'area industriale di Porto Marghera nel Veneziano). Le radici fittonanti riescono a raggiungere profondità maggiori rispetto ad altre piante a rapido accrescimento, inoltre gli inquinanti vengono accumulati in foglie e semi, permettendo un utilizzo sicuro della fibra. Dunque la canapa, pur essendo una coltura tradizionale, ben si presta a molteplici utilizzazioni innovative, che la identificano come una delle colture erbacee più promettenti nello scenario agricolo internazionale. Il presente lavoro ha l'obiettivo di analizzare il mercato e le potenzialità di crescita della canapa nei differenti settori, tenendo in considerazione anche le iniziative finalizzate a promuovere e sostenere, sul territorio, un modello di sviluppo diffuso fondato sulla valorizzazione delle risorse presenti a livello locale e, quindi, sull'integrazione delle diverse attività economiche potenzialmente interessate all'impiego della canapa
Incidence, etiology and predictors of adverse outcomes in 43,315 patients presenting to the Emergency Department with syncope: An international meta-analysis.
BACKGROUND: Syncope remains challenging for Emergency Department (ED) physicians due to difficulties in assessing the risk of future adverse outcomes. The aim of this meta-analysis is to establish the incidence and etiology of adverse outcomes as well as the predictors, in patients presenting with syncope to the ED.
METHODS: A systematic electronic literature review was performed looking for eligible studies published between 1990 and 2010. Studies reporting multivariate predictors of adverse outcomes in patients presenting with syncope to the ED were included and pooled, when appropriate, using a random-effect method. Adverse events were defined as 'incidence of death, or of hospitalization and interventional procedures because of arrhythmias, ischemic heart disease or valvular heart disease'.
RESULTS: 11 studies were included. Pooled analysis showed 42% (CI 95%; 32-52) of patients were admitted to hospital. Risk of death was 4.4% (CI 95%; 3.1-5.1) and 1.1% (CI 95%; 0.7-1.5) had a cardiovascular etiology. One third of patients were discharged without a diagnosis, while the most frequent diagnosis was 'situational, orthostatic or vasavagal syncope' in 29% (CI 95%; 12-47). 10.4% (CI 95%; 7.8-16) was diagnosed with heart disease, the most frequent type being bradyarrhythmia, 4.8% (CI 95%; 2.2-6.4) and tachyarrhythmia 2.6% (CI 95%; 1.1-3.1). Palpitations preceding syncope, exertional syncope, a history consistent of heart failure or ischemic heart disease, and evidence of bleeding were the most powerful predictors of an adverse outcome.
CONCLUSION: Syncope carries a high risk of death, mainly related to cardiovascular disease. This large study which has established the most powerful predictors of adverse outcomes, may enable care and resources to be better focused at high risk patients.
Copyright \ua9 2011 Elsevier Ireland Ltd. All rights reserved
Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set
We combine the results of searches for the standard model Higgs boson based
on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar
collisions at the Fermilab Tevatron corresponding to an integrated luminosity
of 9.45/fb. The searches are conducted for Higgs bosons that are produced in
association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and
decay into bb pairs. An excess of data is present that is inconsistent with the
background prediction at the level of 2.5 standard deviations (the most
significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based
on comments from PRL
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays
We report the first reconstruction in hadron collisions of the suppressed
decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the
CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by
the CDF II detector at the Tevatron collider. We reconstruct a signal for the
B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard
deviations, and measure the ratios of the suppressed to favored branching
fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) =
[42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm
2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) =
-0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for
B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for
Publicatio
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine
Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …
