41 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management

    Get PDF
    We compare objectives and approaches of four regional studies of marine biodiversity: Gulf of Maine Area Census of Marine Life, Baltic Sea History of Marine Animal Populations, Great Barrier Reef Seabed Biodiversity Project, and Gulf of Mexico Biodiversity Project. Each program was designed as an "ecosystem" scale but was created independently and executed differently. Each lasted 8 to 10 years, including several years to refine program objectives, raise funding, and develop research networks. All resulted in improved baseline data and in new, or revised, data systems. Each contributed to the creation or evolution of interdisciplinary teams, and to regional, national, or international science-management linkages. To date, there have been differing extents of delivery and use of scientific information to and by management, with greatest integration by the program designed around specific management questions. We evaluate each research program's relative emphasis on three principal elements of biodiversity organization: composition, structure, and function. This approach is used to analyze existing ecosystem-wide biodiversity knowledge and to assess what is known and where gaps exist. In all four of these systems and studies, there is a relative paucity of investigation on functional elements of biodiversity, when compared with compositional and structural elements. This is symptomatic of the current state of the science. Substantial investment in understanding one or more biodiversity element(s) will allow issues to be addressed in a timely and more integrative fashion. Evaluating research needs and possible approaches across specific elements of biodiversity organization can facilitate planning of future studies and lead to more effective communication between scientists, managers, and stakeholders. Building a general approach that captures how various studies have focused on different biodiversity elements can also contribute to meta-analyses of worldwide experience in scientific research to support ecosystem-based management

    T2K neutrino flux prediction

    Get PDF
    cited By 15 art_number: 012001 affiliation: Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB, Canada; Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland; Department of Physics, Boston University, Boston, MA, United States; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States; IRFU, CEA Saclay, Gif-sur-Yvette, France; Institute for Universe and Elementary Particles, Chonnam National University, Gwangju, South Korea; Department of Physics, University of Colorado at Boulder, Boulder, CO, United States; Department of Physics, Colorado State University, Fort Collins, CO, United States; Department of Physics, Dongshin University, Naju, South Korea; Department of Physics, Duke University, Durham, NC, United States; IN2P3-CNRS, Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau, France; Institute for Particle Physics, ETH Zurich, Zurich, Switzerland; Section de Physique, DPNC, University of Geneva, Geneva, Switzerland; H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland; High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Institut de Fisica d’Altes Energies (IFAE), Bellaterra (Barcelona), Spain; IFIC (CSIC and University of Valencia), Valencia, Spain; Department of Physics, Imperial College London, London, United Kingdom; INFN Sezione di Bari, Dipartimento Interuniversitario di Fisica, Università e Politecnico di Bari, Bari, Italy; INFN Sezione di Napoli and Dipartimento di Fisica, Università di Napoli, Napoli, Italy; INFN Sezione di Padova, Dipartimento di Fisica, Università di Padova, Padova, Italy; INFN Sezione di Roma, Università di Roma la Sapienza, Roma, Italy; Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russian Federation; Kobe University, Kobe, Japan; Department of Physics, Kyoto University, Kyoto, Japan; Physics Department, Lancaster University, Lancaster, United Kingdom; Department of Physics, University of Liverpool, Liverpool, United Kingdom; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; Université de Lyon, Université Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne, France; Department of Physics, Miyagi University of Education, Sendai, Japan; National Centre for Nuclear Research, Warsaw, Poland; State University of New York at Stony Brook, Stony Brook, NY, United States; Department of Physics and Astronomy, Osaka City University, Department of Physics, Osaka, Japan; Department of Physics, Oxford University, Oxford, United Kingdom; UPMC, Université Paris Diderot, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States; School of Physics, Queen Mary University of London, London, United Kingdom; Department of Physics, University of Regina, Regina, SK, Canada; Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany; Department of Physics and Astronomy, Seoul National University, Seoul, South Korea; Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; University of Silesia, Institute of Physics, Katowice, Poland; STFC, Rutherford Appleton Laboratory, Harwell Oxford, Warrington, United Kingdom; Department of Physics, University of Tokyo, Tokyo, Japan; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan; Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, University of Tokyo, Kashiwa, Japan; Department of Physics, University of Toronto, Toronto, ON, Canada; TRIUMF, Vancouver, BC, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada; Faculty of Physics, University of Warsaw, Warsaw, Poland; Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland; Department of Physics, University of Warwick, Coventry, United Kingdom; Department of Physics, University of Washington, Seattle, WA, United States; Department of Physics, University of Winnipeg, Winnipeg, MB, Canada; Faculty of Physics and Astronomy, Wroclaw University, Wroclaw, Poland; Department of Physics and Astronomy, York University, Toronto, ON, Canada references: Astier, P., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 515, p. 800. , (NOMAD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2003.07.054; Ahn, M., (2006) Phys. Rev. D, 74, p. 072003. , (K2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.74.072003; Adamson, P., (2008) Phys. Rev. D, 77, p. 072002. , (MINOS Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.77.072002; Aguilar-Arevalo, A., (2009) Phys. Rev. D, 79, p. 072002. , (MiniBooNE Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.79.072002; (2003) Letter of Intent: Neutrino Oscillation Experiment at JHF, , http://neutrino.kek.jp/jhfnu/loi/loi_JHFcor.pdf, T2K Collaboration; Abe, K., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 659, p. 106. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.06.067; Abe, K., (2011) Phys. Rev. Lett., 107, p. 041801. , (T2K Collaboration), PRLTAO 0031-9007 10.1103/PhysRevLett.107.041801; Abe, K., (2012) Phys. Rev. D, 85, p. 031103. , (T2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.85.031103; Fukuda, Y., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 501, p. 418. , NIMAER 0168-9002 10.1016/S0168-9002(03)00425-X; Beavis, D., Carroll, A., Chiang, I., (1995), Physics Design Report, BNL 52459Abgrall, N., (2011) Phys. Rev. C, 84, p. 034604. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.84.034604; Abgrall, N., (2012) Phys. Rev. C, 85, p. 035210. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.85.035210; Bhadra, S., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 703, p. 45. , NIMAER 0168-9002 10.1016/j.nima.2012.11.044; Van Der Meer, S., Report No. CERN-61-07Palmer, R., Report No. CERN-65-32, 141Ichikawa, A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 690, p. 27. , NIMAER 0168-9002 10.1016/j.nima.2012.06.045; Matsuoka, K., (2010) Nucl. Instrum. Methods Phys. Res., Sect. A, 624, p. 591. , NIMAER 0168-9002 10.1016/j.nima.2010.09.074; Abe, K., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 694, p. 211. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.03.023; Abgrall, N., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 637, p. 25. , (T2K ND280 TPC Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.02. 036; Amaudruz, P.-A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 696, p. 1. , (T2K ND280 FGD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.08. 020; Battistoni, G., Cerutti, F., Fasso, A., Ferrari, A., Muraro, S., Ranft, J., Roesler, S., Sala, P.R., (2007) AIP Conf. Proc., 896, p. 31. , APCPCS 0094-243X 10.1063/1.2720455; A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, Report No. CERN-2005-010A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. SLAC-R-773A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. INFN-TC-05-11R. Brun, F. Carminati, and S. Giani, Report No. CERN-W5013Zeitnitz, C., Gabriel, T.A., (1993) Proceedings of International Conference on Calorimetry in High Energy Physics, , in Elsevier Science B.V., Tallahassee, FL; Fasso, A., Ferrari, A., Ranft, J., Sala, P.R., Proceedings of the International Conference on Calorimetry in High Energy Physics, 1994, , in; Beringer, J., (2012) Phys. Rev. D, 86, p. 010001. , (Particle Data Group), PRVDAQ 1550-7998 10.1103/PhysRevD.86.010001; Eichten, T., (1972) Nucl. Phys. B, 44, p. 333. , NUPBBO 0550-3213 10.1016/0550-3213(72)90120-4; Allaby, J.V., Tech. Rep. 70-12 (CERN, 1970)Chemakin, I., (2008) Phys. Rev. C, 77, p. 015209. , PRVCAN 0556-2813 10.1103/PhysRevC.77.015209; Abrams, R.J., Cool, R., Giacomelli, G., Kycia, T., Leontic, B., Li, K., Michael, D., (1970) Phys. Rev. D, 1, p. 1917. , PRVDAQ 0556-2821 10.1103/PhysRevD.1.1917; Allaby, J.V., (1970) Yad. Fiz., 12, p. 538. , IDFZA7 0044-0027; Allaby, J.V., (1969) Phys. Lett. B, 30, p. 500. , PYLBAJ 0370-2693 10.1016/0370-2693(69)90184-1; Allardyce, B.W., (1973) Nucl. Phys. A, 209, p. 1. , NUPABL 0375-9474 10.1016/0375-9474(73)90049-3; Bellettini, G., Cocconi, G., Diddens, A.N., Lillethun, E., Matthiae, G., Scanlon, J.P., Wetherell, A.M., (1966) Nucl. Phys., 79, p. 609. , NUPHA7 0029-5582 10.1016/0029-5582(66)90267-7; Bobchenko, B.M., (1979) Sov. J. Nucl. Phys., 30, p. 805. , SJNCAS 0038-5506; Carroll, A.S., (1979) Phys. Lett. B, 80, p. 319. , PYLBAJ 0370-2693 10.1016/0370-2693(79)90226-0; Cronin, J.W., Cool, R., Abashian, A., (1957) Phys. Rev., 107, p. 1121. , PHRVAO 0031-899X 10.1103/PhysRev.107.1121; Chen, F.F., Leavitt, C., Shapiro, A., (1955) Phys. Rev., 99, p. 857. , PHRVAO 0031-899X 10.1103/PhysRev.99.857; Denisov, S.P., Donskov, S.V., Gorin, Yu.P., Krasnokutsky, R.N., Petrukhin, A.I., Prokoshkin, Yu.D., Stoyanova, D.A., (1973) Nucl. Phys. B, 61, p. 62. , NUPBBO 0550-3213 10.1016/0550-3213(73)90351-9; Longo, M.J., Moyer, B.J., (1962) Phys. Rev., 125, p. 701. , PHRVAO 0031-899X 10.1103/PhysRev.125.701; Vlasov, A.V., (1978) Sov. J. Nucl. Phys., 27, p. 222. , SJNCAS 0038-5506; Feynman, R., (1969) Phys. Rev. Lett., 23, p. 1415. , PRLTAO 0031-9007 10.1103/PhysRevLett.23.1415; Bonesini, M., Marchionni, A., Pietropaolo, F., Tabarelli De Fatis, T., (2001) Eur. Phys. J. C, 20, p. 13. , EPCFFB 1434-6044 10.1007/s100520100656; Barton, D.S., (1983) Phys. Rev. D, 27, p. 2580. , PRVDAQ 0556-2821 10.1103/PhysRevD.27.2580; Skubic, P., (1978) Phys. Rev. D, 18, p. 3115. , PRVDAQ 0556-2821 10.1103/PhysRevD.18.3115; Feynman, R.P., (1972) Photon-Hadron Interactions, , Benjamin, New York; Bjorken, J.D., Paschos, E.A., (1969) Phys. Rev., 185, p. 1975. , PHRVAO 0031-899X 10.1103/PhysRev.185.1975; Taylor, F.E., Carey, D., Johnson, J., Kammerud, R., Ritchie, D., Roberts, A., Sauer, J., Walker, J., (1976) Phys. Rev. D, 14, p. 1217. , PRVDAQ 0556-2821 10.1103/PhysRevD.14.1217; Abgrall, N., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 701, p. 99. , NIMAER 0168-9002 10.1016/j.nima.2012.10.079; Hayato, Y., (2002) Nucl. Phys. B, Proc. Suppl., 112, p. 171. , NPBSE7 0920-5632 10.1016/S0920-5632(02)01759-0 correspondence_address1: Abe, K.; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan coden: PRVDA abbrev_source_title: Phys Rev D Part Fields Gravit Cosmol document_type: Article source: Scopu

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration

    Get PDF
    In climates with strongly seasonal rainfall, speleothem-based paleoclimate reconstructions are often thought to reflect wet season conditions, assuming a bias toward the season with greater water supply. This is particularly true in monsoon regions, where speleothem records are interpreted to document monsoon strength changes on multiple timescales. Dry season infiltration variability and rainfall seasonality are not typically considered in these reconstructions, even though cave ventilation could bias speleothem growth toward the cooler season. To investigate the influence of dry season infiltration on speleothem geochemistry, we combine a modern, sub-seasonally resolved trace element record from Mawmluh Cave in Northeast India with forward modeling experiments. We find that variations in the amplitude of seasonal signals in speleothem Mg/Ca, which reflects prior carbonate precipitation, are more sensitive to dry season rather than monsoon season infiltration. This sensitivity may be enhanced by dry season cave ventilation. The Mawmluh speleothem Mg/Ca record is consistent with increased dry season rainfall during the 1976–1998 warm phase of the Pacific Decadal Oscillation relative to 1964–2013. Our work demonstrates the importance of considering non-monsoon season rainfall when interpreting speleothem paleoclimate records and suggests that trace elements could provide insight into periods of enhanced dry season infiltration in monsoonal climates

    36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016.

    Get PDF
    corecore