139 research outputs found

    Metabolic profiling of diabetic cats in remission

    Get PDF
    Background: The majority of diabetic cats in remission have abnormal glucose tolerance, and approximately one third relapse within 1 year. Greater understanding of the metabolic characteristics of diabetic cats in remission, and predictors of relapse is required to effectively monitor and manage these cats. Objectives: To identify and compare differences in plasma metabolites between diabetic cats in remission and healthy control cats using a metabolomics approach. Secondly, to assess whether identified metabolites are predictors of diabetic relapse. Animals: Twenty cats in diabetic remission for a median of 101 days, and 22 healthy matched control cats. Methods: Cats were admitted to a clinic, and casual blood glucose was recorded. After a 24 h fast, blood glucose concentration was measured, then a blood sample was taken for metabolomic (GCMS and LCMS) analyses. Three hours later, a simplified intravenous glucose tolerance test (1 g glucose/kg) was performed. Cats were monitored for diabetes relapse for at least 9 months (270 days) after baseline testing. Results: Most cats in remission continued to display impaired glucose tolerance. Concentrations of 16 identified metabolites differed (P ≤ 0.05) between remission and control cats: 10 amino acids and stearic acid (all lower in remission cats), and glucose, glycine, xylitol, urea and carnitine (all higher in remission cats). Moderately close correlations were found between these 16 metabolites and variables assessing glycaemic responses (most |r| = 0.31 to 0.69). Five cats in remission relapsed during the study period. No metabolite was identified as a predictor of relapse. Conclusion and clinical importance: This study shows that cats in diabetic remission have abnormal metabolism

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Response of Sunflower (Helianthus annuus L.) Leaf Surface Defenses to Exogenous Methyl Jasmonate

    Get PDF
    Helianthus annuus, the common sunflower, produces a complex array of secondary compounds that are secreted into glandular trichomes, specialized structures found on leaf surfaces and anther appendages of flowers. The primary components of these trichome secretions are sesquiterpene lactones (STL), a diverse class of compounds produced abundantly by the plant family Compositae and believed to contribute to plant defense against herbivory. We treated wild and cultivated H. annuus accessions with exogenous methyl jasmonate, a plant hormone that mediates plant defense against insect herbivores and certain classes of fungal pathogens. The wild sunflower produced a higher density of glandular trichomes on its leaves than the cultivar. Comparison of the profiles of glandular trichome extracts obtained by liquid chromatography–mass spectroscopy (LC-MS) showed that wild and cultivated H. annuus were qualitatively similar in surface chemistry, although differing in the relative size and proportion of various compounds detected. Despite observing consistent transcriptional responses to methyl jasmonate treatment, we detected no significant effect on glandular trichome density or LC-MS profile in cultivated or wild sunflower, with wild sunflower exhibiting a declining trend in overall STL production and foliar glandular trichome density of jasmonate-treated plants. These results suggest that glandular trichomes and associated compounds may act as constitutive defenses or require greater levels of stimulus for induction than the observed transcriptional responses to exogenous jasmonate. Reduced defense investment in domesticated lines is consistent with predicted tradeoffs caused by selection for increased yield; future research will focus on the development of genetic resources to explicitly test the ecological roles of glandular trichomes and associated effects on plant growth and fitness

    Zazie@60: some linguistic considerations

    Get PDF
    This article considers the colloquial language used in Zazie dans le mĂŠtro from a sociolinguistic viewpoint. To the extent that a fictional work can be said to provide evidence of linguistic variation, Zazie offers glimpses into the pronunciation, grammar and vocabulary of French at the time it was written, as well as confirmation of other sources regarding social variation, notably working-class speech and the style dimension, partly in relation to regional variation, or rather its absence. For this reason, the novel remains a valuable point of reference for contemporary linguists. The novel, in conjunction with other works by Queneau, prompts further questions to do with the level of cognition at work when linguistic variation takes place

    Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism

    Get PDF
    The contribution of adaptive mechanisms in maintaining genetic polymorphisms is still debated in many systems. To understand the contribution of selective factors in maintaining polymorphism, we investigated large-scale (>1000 km) geographic variation in morph frequencies and fitness-related physiological traits in the damselfly Nehalennia irene. As fitness-related physiological traits, we investigated investment in immune function (phenoloxidase activity), energy storage and fecundity (abdomen protein and lipid content), and flight muscles (thorax protein content). In the first part of the study, our aim was to identify selective agents maintaining the large-scale spatial variation in morph frequencies. Morph frequencies varied considerably among populations, but, in contrast to expectation, in a geographically unstructured way. Furthermore, frequencies co-varied only weakly with the numerous investigated ecological parameters. This suggests that spatial frequency patterns are driven by stochastic processes, or alternatively, are consequence of highly variable and currently unidentified ecological conditions. In line with this, the investigated ecological parameters did not affect the fitness-related physiological traits differently in both morphs. In the second part of the study, we aimed at identifying trade-offs between fitness-related physiological traits that may contribute to the local maintenance of both colour morphs by defining alternative phenotypic optima, and test the spatial consistency of such trade-off patterns. The female morph with higher levels of phenoloxidase activity had a lower thorax protein content, and vice versa, suggesting a trade-off between investments in immune function and in flight muscles. This physiological trade-off was consistent across the geographical scale studied and supports widespread correlational selection, possibly driven by male harassment, favouring alternative trait combinations in both female morphs

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • …
    corecore