18 research outputs found

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Multidimensional signals and analytic flexibility: Estimating degrees of freedom in human speech analyses

    Get PDF
    Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis which can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling, but also from decisions regarding the quantification of the measured behavior. In the present study, we gave the same speech production data set to 46 teams of researchers and asked them to answer the same research question, resulting insubstantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further find little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system and calibrate their (un)certainty in their conclusions

    Object play in infants with autism spectrum disorder: A longitudinal retrospective video analysis

    No full text
    Background and aims Early play behaviors may provide important information regarding later-diagnosed developmental delays. Play behaviors of young children with autism spectrum disorder are restricted in diversity, frequency, and complexity. Most autism spectrum disorder research focuses on play in children over 18 months of age. This study examined three groups of infants (later diagnosed with autism spectrum disorder, later diagnosed with other developmental disorders, and typically developing) with the aims of: (1) describing the play behaviors of the three groups of infants at two time points (9–12 months and 15–18 months); (2) examining group differences in four hierarchical levels of play at both time points; (3) comparing groups with respect to the highest level of play achieved; and (4) determining if the highest level of play achieved by infants with autism spectrum disorder and other developmental delays correlated with later developmental outcomes. Methods The current study used longitudinal retrospective video analysis to examine object play behaviors of the three groups of infants (total n = 92) at two time points (time 1: 9–12 months of age, and time 2: 15–18 months of age). Coding of play behaviors was based on existing literature and distribution of data from the current study. Developmental outcomes examined were measured using the Vineland Adaptive Behavior Scales , Childhood Autism Rating Scale , and a non-verbal developmental quotient calculated using visual reception scores from the Mullen Scales for Early Learning . Results Results indicate group differences in play, with infants later diagnosed with autism spectrum disorder showing significantly less sophisticated play than those with typical development. In addition, modest but significant correlations were found between highest level of play achieved at time 1 (9–12 months) and time 2 (15–18 months) and later outcomes for the autism spectrum disorder group. Conclusions and implications Results suggest that examination of infant play behaviors is important for early screening and intervention planning to potentially mitigate effects on later developmental outcomes

    Thermodynamic and transport properties of single crystalline RCo2Ge2 (R=Y, La–Nd, Sm–Tm)

    No full text
    Single crystals of RCO2Ge2 (R=Y, La-Nd, Sm-Tm) were grown using a self flux method and were characterized by room temperature powder X-ray diffraction; anisotropic, temperature and field dependent magnetization; temperature and field dependent, in plane resistivity; and specific heat measurements. In this series, the majority of the moment bearing members order antiferromagnetically; YCO2Ge2 and LaCo2Ge2 are non-moment-bearing. Ce is trivalent in CeCo2Ge2 at high temperatures, and exhibits an enhanced electronic specific heat coefficient due to the Kondo effect at low temperatures. In addition, CeCo2Ge2 shows two low temperature anomalies in temperature dependent magnetization and specific heat measurements. Three members (R=Tb-Ho) have multiple phase transitions above 1.8 K. Eu appears to be divalent with total angular momentum L=0. Both EuCo2Ge2 and GclCo(2)Ge(2) manifest essentially isotropic paramagnetic properties consistent with J=S=7/12. Clear magnetic anisotropy for rare-earth members with finite L was observed, with ErCo2Ge2 and TrnCo(2)Ge(2) manifesting planar anisotropy and the rest members manifesting axial anisotropy. The experimentally estimated crystal electric field (CU) parameters.89 were calculated from the anisotropic paramagnetic 0,a, and 0, values and follow a trend that agrees well with theoretical predictions. The ordering temperatures, TN, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, for the heavy rareearth members deviate from the de Gennes scaling, as the magnitude of both is the highest for Tb, which is sometimes seen for extremely axial systems. Except for SmCo2Ge2, metamagnetic transitions were observed at 1.8 K for all members that ordered antiferromagnetically
    corecore