5,148 research outputs found

    Refractory metal shielding /insulation/ increases operating range of induction furnace

    Get PDF
    Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels

    Diaphragm valve for corrosive and high temperature fluid flow control has unique features

    Get PDF
    Monometallic diaphragm valve is used for corrosive and high temperature fluid flow control. The body, diaphragm, and plug of the valve are welded together to form an integral leakproof unit for containing the fluid as it passes through the valve from inlet to outlet

    Chiral pumping effect induced by rotating electric fields

    Full text link
    We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field. We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e. the chiral pumping effect, is a phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.Comment: 6 pages, 3 figures; a new section added to discuss coupling of the CPE and the CME, a wrong sign corrected, typos fixed, elaborated for better readabilit

    Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    Get PDF
    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent

    Bistatic scattering from a cone frustum

    Get PDF
    The bistatic scattering from a perfectly conducting cone frustum is investigated using the Geometrical Theory of Diffraction (GTD). The first-order GTD edge-diffraction solution has been extended by correcting for its failure in the specular region off the curved surface and in the rim-caustic regions of the endcaps. The corrections are accomplished by the use of transition functions which are developed and introduced into the diffraction coefficients. Theoretical results are verified in the principal plane by comparison with the moment method solution and experimental measurements. The resulting solution for the scattered fields is accurate, easy to apply, and fast to compute

    Sporadic Aurora near Geomagnetic Equator: In the Philippines, on 27 October 1856

    Get PDF
    While low latitude auroral displays are normally considered to be a manifestation of magnetic storms of considerable size, Silverman (2003, JGR, 108, A4) reported numerous "sporadic auroras" which appear locally at relatively low magnetic latitudes during times of just moderate magnetic activity. Here, a case study is presented of an aurora near the geomagnetic equator based on a report from the Philippine Islands on 27 October 1856. An analysis of this report shows it to be consistent with the known cases of sporadic aurorae except for its considerably low magnetic latitude. The record also suggests that extremely low-latitude aurora is not always accompanied with large magnetic storms. The description of its brief appearance leads to a possible physical explanation based on an ephemeral magnetospheric disturbance provoking this sporadic aurora.Comment: 15 pages, 3 figures, accepted for publication in Annales Geophysicae on 18 August 201

    Design, fabrication and performance of small, graphite electrode, multistage depressed collectors with 200-W, CW, 8- to 18-GHz traveling-wave tubes

    Get PDF
    Small multistage depressed collectors (MDC's) which used pyrolytic graphite, ion-beam-textured pyrolytic graphite, and isotropic graphite electrodes were designed, fabricated, and evaluated in conjuntion with 200-W, continuous wave (CW), 8- to 18-GHz traveling-wave tubes (TWT's). The design, construction, and performance of the MDC's are described. The bakeout performance of the collectors, in terms of gas evolution, was indistinguishable from that of typical production tubes with copper collectors. However, preliminary results indicate that some additional radiofrequency (RF) and dc beam processing time (and/or longer or higher temperature bakeouts) may be needed beyond that of typical copper electrode collectors. This is particularly true for pyrolytic graphite electrodes and for TWT's without appendage ion pumps. Extended testing indicated good long-term stability of the textured pyrolytic graphite and isotropic graphite electrode surfaces. The isotropic graphite in particular showed considerable promise as an MDC electrode material because of its high purity, low cost, simple construction, potential for very compact overall size, and relatively low secondary electron emission yield characteristics in the as-machined state. However, considerably more testing experience is required before definitive conclusions on its suitability for electronic countermeasure systems and space TWT's can be made
    corecore