43 research outputs found

    Selective Hydrogenation Reactions for Biomass Conversion Catalyzed by Non-Precious Metals

    Get PDF
    The selective hydrogenation of furfural and glycerol produce high-value chemicals that are useful as the replacement of fuel additives, food preservatives, and polymer precursors that usually come from petroleum. To achieve high levels of conversion and selectivity for these reactions, noble metal catalysts are often used. We studied the conversion of furfural and glycerol to useful derivatives over silica supported non-precious metal single and intermetallic nanoparticle catalysts. Two distinct synthesis methods were used to produce pure-phase bimetallic and monometallic catalysts with various metal loading amounts. Their catalytic properties were tested in reactions that were carried out in a batch reactor under hydrogen. ~90.28% conversion of furfural and ~17.62% selectivity to 2-methylfuran could be achieved (200°C, 0.87g Ni catalyst, 40bar H2) and ~0.4% conversion of furfural and ~100% selectivity to 2-methyl furan could be achieved (200°C, 319.87mg Cu catalyst, 40bar H2). These non-precious metal catalysts are promising owing to their high stability, low cost, and potential for high selectivity and conversion

    Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts

    Get PDF
    Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the “top 10” biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γ-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This catalyst showed 4 times higher activity and exceptional stability in comparison with traditional activated carbon supported ruthenium catalysts (Ru/C). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies suggest that the superior catalytic properties of Ru nanoparticles supported on FLG in LA hydrogenation could be attributed to the greater metallic Ru content present in the Ru/FLG in comparison to that in Ru/C

    Electrochemical Aminoxyl-Mediated α-Cyanation of Secondary Piperidines for Pharmaceutical Building Block Diversification

    Get PDF
    Secondary piperidines are ideal pharmaceutical building blocks owing to the prevalence of piperidines in commercial drugs. Here, we report an electrochemical method for cyanation of the heterocycle adjacent to nitrogen without requiring protection or substitution of the N–H bond. The reaction utilizes ABNO (9-azabicyclononane N-oxyl) as a catalytic mediator. Electrochemical oxidation of ABNO generates the corresponding oxoammonium species, which promotes dehydrogenation of the 2° piperidine to the cyclic imine, followed by addition of cyanide. The low-potential, mediated electrolysis process is compatible with a wide range of heterocyclic and oxidatively sensitive substituents on the piperidine ring and enables synthesis of unnatural amino acids

    Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    Get PDF
    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. A series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. These results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion

    Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects

    Get PDF
    Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutatio n manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.National Institute of Mental Health (U.S.) (Grant 5R01MH097104)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institutes of Health (U.S.) (Grant R01-NS 07312401

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    The tropical Atlantic observing system

    Get PDF
    The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system

    Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    Get PDF
    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia, though local wind forcing can lead to transient near shore current reversals and localized coastal upwelling. The poleward direction of this eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that transport coastal diatom communities westward into open ocean waters. Variations in the Leeuwin transport and eddy generation impact many higher trophic level species including the recruitment and fate of rock lobster (Panulirus cygnus) larvae. In contrast, the transport of the Agulhas Current is very large, with sources derived from the Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial distribution of prominent surface manifestations of upwelling is controlled by local wind and topographic forcing. Meanders and eddies in the Agulhas Current propagate alongshore and interact with seasonal changes in the winds and topographic features. These give rise to seasonally variable localized upwelling and downwelling circulations with commensurate changes in primary production and higher trophic level responses. Due to the strong influence of the Agulhas Current, many neritic fish species in southeast Africa coastal waters have evolved highly selective behaviors and reproductive patterns for successful retention of planktonic eggs and larvae. For example, part of the Southern African sardine (Sardinops sagax) stock undergoes a remarkable northward migration enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. There is evidence from the paleoceanographic record that these currents and their biogeochemical and ecological impacts have changed significantly over glacial to interglacial timescales. These changes are explored as a means of providing insight into the potential impacts of climate change in the Indian Ocean

    Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder

    Get PDF
    This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore