1,876 research outputs found

    A critical comparison of using a probabilistic weather generator versus a change factor approach: irrigation reservoir planning under climate change

    Get PDF
    In the UK, there is a growing interest in constructing on-farm irrigation reservoirs, however deciding the optimum reservoir capacity is not simple. There are two distinct approaches to generating the future daily weather datasets needed to calculate future irrigation need. The change factor approach perturbs the observed record using monthly change factors derived from downscaled climate models. This assumes that whilst the climate changes, the day-to-day climate variability itself is stationary. Problems may arise where the instrumental record is insufficient or particularly suspect. Alternatively, probabilistic weather generators can be used to identify options which are considered more robust to climate change uncertainty because they consider non-stationary climate variability. This paper explores the difference between using the change factor approach and a probabilistic weather generator for informing farm reservoir design at three sites in the UK. Decision outcomes obtained using the current normal practice of 80% probability of non-exceedance rule and simple economic optimisations are also compared. Decision outcomes obtained using the change factor approach and probabilistic weather generators are significantly different; whether these differences translate to real-world differences is discussed. This study also found that using the 80% probability of non-exceedance rule could potentially result in maladaptation

    Irrigation demand modelling using the UKCP09 weather generator: lessons learned

    Get PDF
    The determination of irrigation demand is typically based on crop modelling using a long historic record of local daily weather data. However, there are rarely adequate weather station records near to given sites; often any local records cover a limited number of years, are incomplete, costly or are of poor quality. This paper examines whether version 1 of the UKCP09 weather generator can provide a simpler and effective method of calculating irrigation demand with sufficient accuracy for regulatory and design purposes. The irrigation demands at seven sites distributed around England were modelled using the UKCP09 baseline climatology and compared with results modelled using daily observed weather records. For the design dry year used for irrigation planning, the weather generator replicated the observed conditions with reasonable accuracy. The weather generator was however less successful at replicating extreme dry years. These results are encouraging but also provide a note of caution for the use of these generated datasets for studying current irrigation demand and by implication for modelling future needs under climate change. The study also demonstrated a simple sub-sampling approach for reducing the processing demands if using the dataset in more complex models, though this would not remove any underlying error

    Assessing spectral similarities between rainfed and irrigated croplands in a humid environment for irrigated land mapping

    Get PDF
    Deriving accurate spatial assessments of the distribution of irrigated crops has become more important in recent years for water resource planning, particularly where irrigation water resources are constrained. However, this is easier in arid climates than in humid areas such as eastern England. The challenges in using alternative vegetation indices derived from remote sensing to discriminate between irrigated and rainfed crops in a humid climate are described, focusing on potato (Solanum tuberosum L.), the most important irrigated crop in England. Three techniques were evaluated: (a) temporal profile comparisons using the Normalized Difference Vegetation Index (NDVI); (b) cluster analysis combining the NDVI and the Normalized Difference Water Index (NDWI); and (c) identifying differences in chlorophyll content using green and near infrared bands. However, the study confirmed that the spectral signatures of irrigated and rainfed potato in England during a typical summer are very similar, presumably due to frequent rainfall events which reduce differences in water stress and chlorophyll content. The implications for using remote sensing to estimate irrigated areas in humid climates are discussed

    Alien Registration- Weatherhead, Catherin E. (Limestone, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/35214/thumbnail.jp

    Charles Tomlinson: With Respect to Flux

    Full text link

    Alien Registration- Weatherhead, Annie C. (Limestone, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/24888/thumbnail.jp

    The economics of irrigating wheat in a humid climate - A study in the East of England

    Get PDF
    In the UK, wheat is the most important cultivated cereal, grown extensively as a rainfed crop. Irrigation of wheat has previously been considered uneconomic, but increases in world wheat prices and recent droughts have led to some farmers revising their views. Widespread adoption of wheat irrigation would have major implications for wheat production, the irrigation industry and water resources in regions that are already water scarce. This study investigated the financial viability of irrigating winter wheat grown on a sandy loam soil in the East of England. Long-term climate data (1961–2011) for Silsoe (Bedfordshire) was used to drive a biophysical crop model to assess irrigation water requirements and yield response. Modelling assumed a typical irrigation schedule to maximise yield and quality, and average reported wheat prices for 2007 to 2012. Irrigation costs were calculated assuming an overhead mobile hosereel–raingun system applying river water, abstracted either in summer and used directly, or abstracted in winter and stored in an on-farm reservoir. The results suggest that the yield benefit would justify supplemental irrigation by farmers who have unused irrigation equipment and unused summer water, although irrigation of higher-value field vegetable crops later in the season would normally take precedence – the Added Value of Water (AVW) usefully applied to milling winter wheat under these conditions ranged between 0.24 and 0.32 £ m−3. Investment in new irrigation schemes could also be marginally viable if unused summer river water was available for direct abstraction (AVW = 0.08 £ m−3). Investments in new farm reservoirs for irrigating wheat are currently not profitable (AVW = –0.23 £ m−3). Sensitivity analysis suggests that in the longer term, the expected increase in world wheat prices and the impacts of climate change are likely to make the financial benefits stronger, particularly in the drier catchments further east and on low moisture retentive soils, but competing demands for water would still make extensive wheat irrigation unlikely

    Alien Registration- Weatherhead, John M. (Jefferson, Lincoln County)

    Get PDF
    https://digitalmaine.com/alien_docs/12937/thumbnail.jp

    What is an Indian Tribe ?--The Question of Tribal Existence

    Get PDF
    • …
    corecore