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Abstract 

 

Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in 

complex boundary currents, which are unique in many respects. In the northern Indian 

Ocean, several boundary current systems reverse seasonally.  For example, upwelling 

coincident with northward-flowing currents along the coast of Oman during the 

Southwest Monsoon gives rise to high productivity which also alters nutrient 

stoichiometry and therefore, the species composition of the resulting phytoplankton 

blooms.  During the Northeast Monsoon most of the northern Indian Ocean boundary 

currents reverse and favor downwelling. Higher trophic level species have evolved 

behavioral responses to these seasonally changing conditions. Examples from the western 

Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and 

the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts 

of these seasonal current reversals and changes in upwelling and downwelling 

circulations are also manifested in West Indian coastal waters, where they influence 

dissolved oxygen concentrations and have been implicated in massive fish kills. The 

winds and boundary currents reverse seasonally in the Bay of Bengal, though the 

associated changes in upwelling and productivity are less pronounced. Nonetheless, their 

effects are observed on the East Indian shelf as, for example, seasonal changes in 

copepod abundance and zooplankton community structure. In contrast, south of Sri 

Lanka seasonal reversals in the boundary currents are associated with dramatic changes 

in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort 

of fishes.  Off the coast of Java, monsoon-driven changes in the currents and upwelling 

strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, 

and sardine catch in Bali Strait. 

 

In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows 

southward along western Australia, though local wind forcing can lead to transient near 

shore current reversals and localized coastal upwelling. The poleward direction of this 
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eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current 

sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that 

transport coastal diatom communities westward into open ocean waters.  Variations in the 

Leeuwin transport and eddy generation impact many higher trophic level species 

including the recruitment and fate of rock lobster (Panulirus cygnus) larvae.  In contrast, 

the transport of the Agulhas Current is very large, with sources derived from the 

Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-

gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial 

distribution of prominent surface manifestations of upwelling is controlled by local wind 

and topographic forcing.  Meanders and eddies in the Agulhas Current propagate 

alongshore and interact with seasonal changes in the winds and topographic features.  

These give rise to seasonally variable localized upwelling and downwelling circulations 

with commensurate changes in primary production and higher trophic level responses.  

Due to the strong influence of the Agulhas Current, many neritic fish species in southeast 

Africa coastal waters have evolved highly selective behaviors and reproductive patterns 

for successful retention of planktonic eggs and larvae.  For example, part of the Southern 

African sardine (Sardinops sagax) stock undergoes a remarkable northward migration 

enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. 

 

There is evidence from the paleoceanographic record that these currents and their 

biogeochemical and ecological impacts have changed significantly over glacial to 

interglacial timescales.  These changes are explored as a means of providing insight into 

the potential impacts of climate change in the Indian Ocean. 

 

Keywords: Indian Ocean, boundary currents, monsoon, Southwest Monsoon, Northeast 

Monsoon, Southeast Monsoon, upwelling, downwelling, transport, nutrients, chlorophyll, 

primary production, zooplankton, fish, Somali Current, East African Coastal Current, 

Oman Coastal Current, West India Coastal Current, East India Coastal Current, 

Southwest Monsoon Current, Northeast Monsoon Current, South Java Current, Leeuwin 

Current, Mozambique Channel, East Madagascar Current, Agulhas Current, Agulhas 

Bank 
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1. Introduction 

 

1.1 The unique geomorphological and physical aspects of the Indian Ocean 

 

Boundary currents are part of the major wind-driven circulations of the oceans, and they 

play an important role in the global thermohaline circulation.  In addition, boundary 

currents mediate the fluxes of biogeochemical properties, and planktonic ecosystems, 

between major oceanic biomes. In so doing, they also impact higher trophic level (e.g., 

fishes) recruitment, production and behavior.  The boundary currents in the Indian Ocean 

(Figure 1) are unique in many respects, compared to the boundary currents in the Atlantic 

and Pacific (Schott and McCreary, 2001; Hood et al., 2015).  In the northern Indian 

Ocean the boundary currents reverse seasonally due to the influence of the monsoon 

winds (Figure 1).  In the southeastern Indian Ocean, the Leeuwin Current flows poleward 

rather than equatorward (Figure 1). Although the Agulhas Current is a “normal” 

poleward-flowing western boundary current (Figure 1), it also has unusual attributes, 

which include large alongshore-propagating meanders and eddies that can substantially 

modify surface currents and upwelling and downwelling circulations (Lutjeharms, 

2006a).   

 

These unusual boundary current characteristics are directly related to the geography of 

the Indian Ocean (Figure 2).  It is bounded to the north at low latitude by the Eurasian 

landmass so has no subtropical or temperate zones in the northern hemisphere.  As a 

result, the northern Indian Ocean boundary currents do not flow into cooler water masses.  

Seasonal heating/cooling of the Eurasian land mass drives the intense semi-annual 

reversal of monsoonal winds (Figure 3; Slingo et al., 2005), which is a stark contrast to 

the gyre-scale atmospheric circulations operating in the northern Atlantic and Pacific 

basins.  These monsoon winds, in turn, give rise to the seasonally reversing boundary 

currents in the northern Indian Ocean.  

 

The partitioning of the northern basin of the Indian Ocean by the Indian subcontinent 

effectively creates two sub-basins and sub-gyres with distinct temperature and salinity 

characteristics and quasi-independent boundary current systems (though see section 2).  
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In particular, differences in evaporation, precipitation, river runoff, and connectivity to 

marginal seas, give rise to pronounced differences in salinity and stratification influences 

between the Arabian Sea and Bay of Bengal (Figure 4).  As a result, the boundary 

currents in the former (where evaporation exceeds precipitation, river inputs are minor, 

and highly saline Persian Gulf and Red Sea waters contribute) are much saltier than they 

are in the latter (where precipitation exceeds evaporation and river inputs are large).  

Consequently, the signature of the salty source waters from the Arabian Sea that flow 

into the Bay of Bengal can be observed in the boundary currents in the Bay of Bengal. 

Similarly, freshwater signatures that propagate from the Bay of Bengal are apparent 

along the southwest coast of India (Shankar et al.,  2002).  

 

The Indonesian Throughflow (ITF) is another unique attribute of the Indian Ocean, 

allowing low latitude exchange between the western Pacific and eastern Indian Ocean 

through the Indonesian Archipelago (Gordon and Fine, 1996; Gordon et al., 1997), as 

opposed to the continental barriers that exist along the eastern Pacific and eastern 

Atlantic Oceans. The principal ITF pathway between the basins consists of flows that 

traverse the Makassar Strait, mix in the Banda Sea and then enter the Indian Ocean 

through the Timor Passage and Ombai Strait, with lesser contributions via Lombok Strait 

(Susanto and Song, 2015).  The ITF inflow sets up the large-scale pressure gradients that 

drive the anomalous poleward-flowing Leeuwin Current in the southeast Indian Ocean 

which carries warm, and relatively fresh, water southward off the west coast of Australia 

(Figure 1; Schott and McCreary, 2001; Domingues et al., 2007).  The Indonesian 

Throughflow also feeds and strengthens the Agulhas Current in the west via the South 

Equatorial Current (Figure 1; Lutjeharms, 2006a).  

 

1.2 Recent advances in understanding biogeochemical, ecological and higher trophic 

level responses 

 

In contrast to these relatively well-studied physical processes, we know much less about 

the impacts of Indian Ocean boundary currents on marine biogeochemistry, ecology and 

higher level trophodynamics and behavior.  Much of our current understanding in the 

northern Indian Ocean derives from the international JGOFS (Joint Global Ocean Flux 
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Study) Arabian Sea process studies that were carried out in the 1990s (see, for example, 

Deep-Sea Research II, volumes 44-49 on the JGOFS Arabian Sea Expedition, and Smith, 

2005). These studies primarily focused on trophic levels at or below mesozooplankton.  

There was a strong focus on how planktonic distributions, export fluxes and 

biogeochemical cycling are affected by monsoon-forced currents and upwelling on the 

western side of the basin off of Somalia, Oman and in the central Arabian Sea.   

Compared to the Arabian Sea, we know relatively little about the biogeochemical and 

higher trophic level impacts of the boundary currents in the Bay of Bengal and in the 

eastern Indian Ocean, though recent research has provided important new insights on the 

western side of the Bay of Bengal  (see, for example, Vinayachandran 2009 and 

references cited therein).  With a few exceptions, we can only speculate about the impacts 

of these seasonally reversing currents on commercially important higher trophic level 

species like sardines, tuna and squid, and on the massive myctophid populations. 

 

As a result of numerous recent multidisciplinary studies that have been conducted off of 

Western Australia (see, for example, Waite et al. 2015 and references cited therein) we 

have a much deeper understanding of how the Leeuwin Current impacts biogeochemistry, 

ecology and higher trophic level species in this region.   The latter includes important 

commercial species like the western rock lobster (Panulirus cygnus) as well as numerous 

coastal fishes whose larvae are strongly impacted by the southward transport and 

westward-propagating eddies that are associated with the Leeuwin Current.    

 

Our understanding of the Agulhas Current and its tributaries has also benefitted from 

recent interdisciplinary international research initiatives (see, for example, Ternon et al., 

2014; Marsac et al., 2014 and references cited therein for the Mozambique Channel and 

Fennessy et al., 2016 and references cited therein for the Kwa-Zulu Natal Bight) that 

have built upon a long history of research conducted off South Africa (e.g., Hutchings et 

al., 2002).   This work has provided many insights into the impact of southwestern Indian 

Ocean boundary currents on biogeochemistry, ecology and higher trophic levels.  
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1.3 Review of the paper 

 

In this paper, we explore and contrast how the unique physical attributes of Indian Ocean 

boundary currents influence biogeochemical fluxes, planktonic ecosystems and higher 

trophic level pelagic productivity, behavior and recruitment.  The physical characteristics 

that we examine include differences in temperature, salinity, seasonality, transport, 

upwelling and mesoscale variability.  These give rise to distinct differences among Indian 

Ocean boundary currents in the intensity, duration and timing of nutrient inputs and 

productivity responses (Table 1). To illustrate the impacts these currents have on higher 

trophic level productivity, behavior and recruitment we provide selected examples from 

each current system, which cover a wide range of sizes and trophic levels and include 

copepods, decapods and fishes.  We show that these currents have profound 

biogeochemical and ecological impacts that differ in many respects from one another and 

that these differences can be linked to their physical attributes.   

 

2. The Seasonally Reversing Currents of the Northern Indian Ocean 

 

2.1 Introduction 

 

During boreal summer heating over the Eurasian land mass, and more directly the 

Tibetan Plateau (e.g., Kripalani et al., 2003), drives the strong Southwest Monsoon 

(SWM) winds that flow across the Arabian Sea (where it is termed the Findlater Jet; 

Findlater, 1969), the Indian subcontinent and the Bay of Bengal from late May through 

August (Figure 3). Then, in the winter months (December through February) cooling and 

subsidence of the continental air masses over Eurasia and the Tibetan Plateau forms the 

Northeast Monsoon (NEM) that flows in, approximately, the opposite direction (Figure 

3). In general, the monsoon winds drive anticyclonic and therefore upwelling favorable 

boundary current circulations during the SWM, versus cyclonic and downwelling 

favorable circulations during the NEM (Figure 2; Schott and McCreary, 2001; Shankar et 

al., 2002; Beal et al., 2013). This seasonality is more pronounced along the western sides 

of the Arabian Sea and Bay of Bengal sub-basins, and particularly, in the western 

Arabian Sea where the monsoon winds are most intense (Figure 3; Schott and McCreary, 

2001; Shankar et al., 2002; Beal et al., 2013). Although most boundary current systems 
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exhibit some seasonal variability in transport, as well as wind-induced reversals in near 

shore flows, the northern Indian Ocean is the only place where major boundary currents 

undergo full seasonal reversal.  

 
2.2 Local versus remote forcing and seasonality 

 

Local (monsoon) wind forcing impacts are very strong in the northern Indian Ocean as 

evidenced by the dramatic response of the basin’s boundary currents.  However, the 

changes in wind speed and direction associated with the monsoons are coherent over the 

entire northern Indian Ocean (Schott and McCreary, 2001; Schott et al., 2009; Shankar et 

al., 2002).  As a result, the semi-annual changes in the boundary circulations (Figure 1) 

represent a quasi-coherent, basin-scale response.  In addition, these boundary currents are 

influenced remotely and are modified significantly by coastally trapped Kelvin waves 

that initiate along the Sumatra coast as a result of the arrival of the eastward propagating 

Wyrtki Jet.  

 

The Wyrtki Jet is a semi-annual, equatorially trapped Kelvin wave that is triggered during 

the inter-monsoon periods by equatorial westerly wind bursts in the western Indian Ocean 

(Wyrtki, 1973; Sprintall et al., 2000). Following the Jet’s impingement on Sumatra it 

bifurcates and propagates northward and southward as coastal Kelvin waves. As they 

continue around the coastline, the coastal Kelvin waves influence the Bay of Bengal’s 

circulation and boundary currents, eventually passing south of India and Sri Lanka and 

continuing into the Arabian Sea (McCreary et al., 1996; Schott and McCreary, 2001; 

Shankar et al., 2002; and references cited therein).  The coastal Kelvin waves that 

propagate southward following the Wyrtki Jets’ impingement on the Sumatra coast have 

been shown to trigger reversal of the South Java Current and influence the Indonesian 

Throughflow (Iskander et al., 2005; Sprintall et al., 2000; Sprintall et al., 2010).    

 

These coastal Kelvin waves have significant influences, not only in the eastern equatorial 

Indian Ocean, but on the boundary currents throughout the northern Indian Ocean. They 

can cause them to respond in ways that seem paradoxical compared to what would be 

expected from the local wind forcing, i.e., they can drive abrupt changes in surface 
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currents, thermocline depth and upwelling that are in opposition to local wind forcing 

(Schott and McCreary, 2001; Shankar et al., 2002; and references cited therein).   

 

2.3 The Arabian Sea and the western Indian Ocean 

 

2.3.1 General physical attributes  

 

The seasonally reversing currents in the Arabian Sea and the western Indian Ocean that 

are considered here include the Somali Current off Somalia and the Oman Coastal 

Current off of Oman, the West India Coastal Current that hugs the west coast of India, 

and the Southwest Monsoon Current that traverses eastward offshore around the southern 

tip of India and Sri Lanka during the SWM and enables exchange between the Arabian 

Sea and Bay of Bengal (Figure 1). 

 

The Somali Current exhibits seasonal reversals and seasonal variations in its pathway 

along the east coast of Africa due to its association with the East African Coastal Current. 

During the NEM, the southwestward-flowing Somali Current merges with the East 

African Coastal Current to form the South Equatorial Countercurrent (Figure 1; Beal et 

al., 2013). In contrast, during the SWM, the East African Coastal Current traverses the 

equator and continues into the Arabian Sea as the Somali Current, with a portion of the 

current splitting off and turning southward again to form the “Southern Gyre” (Schott and 

McCreary, 2001; Shankar et al. 2002; Schott et al., 2009; Figure 1).  However, recent 

observations suggest that this may not be a gyre but, rather, the retroflection of the East 

African Coastal Current, which feeds into eastward-flowing equatorial currents (Beal et 

al., 2013; Figure 1). 

 

The Somali Current exhibits significant complexity as it flows northeastward off Somalia 

during the SWM, extending to a depth of ~500 m (Schott and McCreary, 2001; Figure 1).  

With an estimated transport of ~37 Sv (Beal and Chereskin, 2013), the Somali Current is 

the largest boundary current in the Northern Indian Ocean. The northward flowing phase 

of the Somali Current initiates south of the equator just prior to onset of the SWM. As it 

propagates along the African coast two anticyclonic eddies form, the somewhat cryptic 
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Southern Gyre at ~ 3° N in late May and the Great Whirl at ~ 8° N in June as the 

Findlater Jet (Findlater, 1969; Figure 1) becomes fully established (Beal and Donohue, 

2013). Interestingly, the anticyclonic circulation indicative of the Great Whirl appears on 

average in April, almost two months before the onset of the SWM winds (Beal and 

Donohue, 2013). This early initiation is coincident with, and perhaps forced by, the 

arrival of annual Rossby waves at the western boundary (Beal and Donohue, 2013). With 

the onset of the SWM in early June, the Great Whirl intensifies quickly. Although most 

of the flow associated with the Great Whirl turns offshore (eastward) before reaching the 

Horn of Africa, some fraction continues to propagate northward, crosses the mouth of the 

Gulf of Aden and proceeds along the coast of Oman as the Oman Coastal Current with an 

estimated transport of up to 10 Sv (Cutler and Swallow, 1984; Elliot and Savidge, 1990; 

Figure 1).   

 

The Oman Coastal Current turns abruptly eastward to form the Ras al Hadd Jet that flows 

across the northern Arabian Sea along the southern extent of the Gulf of Oman (Figure 1; 

Wiggert et al., 2005).  However, during the SWM, intense eddies and offshore 

propagating flows (described as filaments and jets) develop, which tend to obscure the 

northward alongshore flow in the western Arabian Sea.  These eddies and offshore flows 

are apparent in satellite SST and color measurements (e.g., Fischer et al., 2002 and see 

Figure 7 below) and also by in situ observations and they appear to be linked to coastal 

topographic features (Flagg and Kim, 1998; Manghnani et al., 1998; Lee et al., 2000). 

However, there is poor understanding of the dynamics and transport associated with the 

southwestern portion of the Oman Coastal Current and there are open questions regarding 

its continuity and offshore mesoscale eddy interaction (Figure 1; Wiggert et al., 2005).  

 

During the NEM, the Somali Current flows southwestward along the coast of Somalia 

with a transport of ~5 Sv and it extends down to ~150 m depth (Schott and McCreary, 

2001; Figure 1).  As it crosses the equator, the Somali Current feeds into the eastward 

propagating South Equatorial Countercurrent (Figure 1; Beal et al., 2013). Further north, 

off the coast of Oman, the flow is generally southward during the NEM except across the 

mouth of the Gulf of Aden where coastal currents from the north and south converge to 
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form weak westerly flows (Figure 1).  In the northern Arabian Sea, during the SWM, the 

mean flow along the coast is eastward (Figure 1; Schott and McCreary, 2001) and during 

the NEM it is westward (Figure 1; Shi et al., 2000). 

 

Along the eastern boundary of the Arabian Sea during the SWM, the West India Coastal 

Current carries ~4 Sv of high salinity water southward along the west coast of India, 

extending to about 100 m depth (Figure 1).  This current strengthens as it progresses 

southward from its first manifestation at ~15° N (Shetye et al., 1990).  During the NEM 

the West India Coastal Current reverses and transports ~7 Sv of less saline water 

northward (Figure 1).  This flow is in opposition to the prevailing (albeit weak) surface 

winds (Shetye et al., 1991).  The poleward phase of the West India Coastal Current is 

better developed than the equatorward phase, extending to a depth of ~ 200 m with a 

lateral swath of ~ 400 km at 10° N (Shetye, 1998).  Along with the seasonal reversal of 

the West India Coastal Current, anticyclonic/cyclonic circulations develop in the waters 

offshore of the southwest coast of India during the SWM/NEM (Figure 1). These 600-

800 km wide eddies are identified as the Laccadive (Lakshadweep) Low/High (Bruce et 

al. 1994; Shankar and Shetye, 1997).   

 

During the SWM the Southwest Monsoon Current extends from the southward flowing 

West India Coastal Current, as it wraps around the western edge of the Laccadive  Low 

and turns eastward south of India with connectivity to the poleward flowing East India 

Coastal Current (Figure 1; Shankar and Shetye, 1997).  This circulation, however, is 

complex.  For example, the island of Sri Lanka deflects the eastward-flowing Southwest 

Monsoon Current southward, whilst along the eastern coast of Sri Lanka, a southward 

flow results from the Sri Lanka Dome recirculation (Schott and McCreary, 2001; de Vos 

et al., 2014; Figure 1).  During the NEM the Southwest Monsoon Current is replaced by 

the Northeast Monsoon Current, which flows in the opposite direction (see section 2.4.1 

below).   

 

2.3.2 Upwelling and downwelling variability and mesoscale activity 
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The changes in upwelling and downwelling associated with the monsoonal forcing and 

boundary current reversals in the Arabian Sea and the western Indian Ocean are dramatic 

(Figure 1).  Strong upwelling is associated with the winds and the anticyclonic boundary 

current circulations that develop during the SWM, though the intensity and surface 

manifestation vary regionally.  The strongest upwelling response is observed in the 

western Arabian Sea off of Somalia, Yemen and Oman (Figure 1) where near-surface 

nitrate concentrations increase to > 15 µM (Morrison et al. 1998).   These regions exhibit 

very high eddy kinetic energy, particularly off of Somalia in association with the Great 

Whirl (Resplandy et al., 2009; McCreary et al., 2013; Figure 3). Modeling studies 

demonstrate that the aforementioned eddies and filaments facilitate offshore transport of 

coastally upwelled nutrients (Kawamiya, 2001; Resplandy et al., 2011).   

 

Although less pronounced, the southward-flowing West India Coastal Current promotes 

upwelling that outcrops at the surface along the west coast of India (Figure 1).   This 

upwelling is most pronounced between ~8 N and 14 N (Shetye et al., 1990; Smitha et 

al., 2014) and progressively extends from south to north during the SWM (Murty, 1987; 

Shetye and Gouveia, 1998).  This upwelling is associated with the SWM winds, which 

strengthen in April, reach maximum velocity in August and then weaken in October 

(Shetye and Shenoi, 1988).  However, it should be noted that, on average, the SWM 

winds do not blow alongshore, but rather onshore along the west coast of India (Figure 

3). Moreover, numerical models suggest that the upwelling is predominantly forced 

remotely from the Bay of Bengal via northward propagation of coastal Kelvin waves 

(McCreary et al., 1993). Satellite color imagery suggests that seaward extension of 

upwelling off the west coast of India is much less pronounced than it is off of Somalia 

and Oman (Wiggert et al. 2006; Figure 2; Figure 5). Further, in comparison to the 

western Arabian Sea, the eddy kinetic energy is considerably lower (Resplandy et al., 

2011; McCreary et al., 2013; Figure 3).  

 

The Laccadive Low and High that develop off the southwest coast of India during the 

SWM and NEM are anticyclonic and cyclonic, and therefore result in upwelling and 

downwelling circulations, respectively (Figure 1).  Although the impact of these 



  

R. R. Hood, L. E. Beckley, and J. D. Wiggert / Progress in Oceanography 
 

13 
 

circulations is evident in sea surface height (SSH) data (Bruce et al., 1994; Shankar and 

Shetye, 1997; Subrahmanyam and Robinson, 2000), they do not appear to have a strong 

influence on eddy kinetic energy (Figure 3) or on nutrient and/or chlorophyll 

concentrations at the surface (Lierheimer and Banse, 2002; see below). 

 

Although the cyclonic boundary currents and northeasterly winds that are associated with 

the NEM are, generally, downwelling favorable in the Arabian Sea and the western 

Indian Ocean (Figures 1 and 3), the vagaries of local wind forcing and remote forcing via 

coastal Kelvin waves and their associated laterally propagating buoyancy fluxes can have 

counteracting effects.  Observations show that remote forcing of the West India Coastal 

Current is present at all times and that this influence is most striking when the local winds 

are weak during the intermonsoon periods (Amol et al., 2012).  The fresher waters of the 

West India Coastal Current that flow up the west coast of India during the NEM give rise 

to shallow mixed layers on the continental shelf off the southeast coast of India, and also 

northward displacement of maximum mixed layer depth from the location of peak net 

heat loss associated with the winter monsoon forcing (Shankar et al., 2015).  

 

2.3.3 Impacts on primary production 

 

The entire western side of the Northern Indian Ocean, and particularly the western 

Arabian Sea, transitions to a eutrophic coastal upwelling system during the SWM as a 

result of the monsoon-driven transition to upwelling favorable winds and currents 

(Wiggert et al., 2005; and references cited therein; Figure 2; Figure 5; Figure 6). These 

changes are revealed in ocean color data as dramatic increases in chlorophyll 

concentrations particularly along the coasts of Somalia, Yemen and Oman and, to a lesser 

extent, along the west coast of India (e.g., Brock and McClain, 1992; Banse and English, 

2000; Kumar et al., 2000; Lierheimer and Banse, 2002; George et al., 2013; Figure 2; 

Figure 5). During the SWM, vertically-integrated chlorophyll-a concentrations in the 

western Arabian Sea can exceed 40 mgChla m
-2

 with areal primary production rates > 2.5 

gC m
-2

d
-1

 (Marra et al. 1998; Figure 6).  However, during the SWM the environmental 

conditions vary dramatically between the eutrophic coastal zones off of Somalia, Yemen 

and Oman and the oligotrophic open ocean waters that are subject to pronounced wind-
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curl induced downwelling south of the Findlater Jet (Lee et al., 2000). Over this coastal to 

open ocean gradient in physical environments, mixed layer nitrate and chlorophyll 

concentrations decline dramatically from > 10 to < 0.02 µM and from > 1.0 to < 0.2 

mgChla m
-3
, respectively (Brown et al., 1999).  Past studies have shown that, in general, 

the phytoplankton community structure shifts to larger cells (e.g., diatoms) during the 

SWM in the western Arabian Sea (Brown et al., 1999; Tarran et al., 1999; Shalapyonok 

et al., 2001), albeit with small primary producers remaining active and important, even in 

areas strongly influenced by coastal upwelling where picophytoplankton can still 

comprise more than 30% of the phytoplankton carbon (Brown et al., 1999).  In general, 

during the oligotrophic intermonsoon periods, surface waters in the western Arabian Sea 

are dominated by picoplanktonic Prochlorococcus and Synechococcus species (Garrison 

et al., 2000). 

 

Off Somalia and Oman, the presence of the topographically-locked eddies not only drive 

the coastal currents, but they also generate strong offshore flows (i.e., filaments) that 

transport high nutrient and chlorophyll concentrations and distinct coastal phytoplankton 

communities hundreds of kilometers offshore (Keen et al., 1997; Latasa and Bidigare, 

1998; Manghnani et al., 1998; Gundersen et al., 1998; Hitchcock et al., 2000; Lee et al., 

2000; Kim et al., 2001; Figure 7).  These advective effects are seen most clearly in 

association with the Great Whirl off of the northern tip of Somalia (Hitchcock et al., 

2000) and the persistent filaments that consistently develop off of the Arabian Peninsula 

during the SWM (Wiggert et al. 2005; Figure 7).  Although the circulation and winds 

transition to downwelling favorable during the NEM, the combination of buoyancy 

driven convection and moderate wind forcing drive entrainment of nutrients that 

promotes modest increases in chlorophyll and production over much of the northern and 

central Arabian Sea (Wiggert et al., 2000; Figure 5; Figure 6).  

 

Coupled physical-biological modeling studies have suggested that reversals in the coastal 

currents and changes in upwelling intensity lead to shifts in nutrient stoichiometry in the 

Arabian Sea, albeit with varied guidance on identifying the most-limiting nutrient 

(Wiggert et al., 2006; Koné et al., 2009; Resplandy et al., 2011). Specifically, these 
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studies indicate that, during the SWM, phytoplankton growth in coastally upwelled 

waters in the Arabian Sea are prone to silicate limitation (Koné et al., 2009; Resplandy et 

al., 2011) and/or iron limitation (Wiggert et al., 2006; Wiggert and Murtugudde, 2007) 

off the coasts of Somalia, Yemen and Oman (modeled iron limitation patterns are 

depicted in Figure 8). These model-based findings are supported by both direct and 

indirect observational evidence.  High N:Si ratios (∼2/1 as compared to the ∼1/1 ratio 

often assumed as the ratio of uptake during diatom growth) measured in the water 

upwelled along the Omani coast suggest the potential for silicate limitation of diatom 

growth (Morrison et al., 1998). Similarly, N:Fe ratios in coastally upwelled waters 

measured during SWM cruises of the U.S. Arabian Sea JGOFS expedition range from 

20,000– 30,000, where values above 15,000 are inherently iron limited (Measures and 

Vink, 1999).  Moreover, both the N:Fe and N:Si ratios were observed to increase by the 

latter stages of the SWM, with the higher N:Si ratios (i.e. preferential Si depletion, 

Morrison et al., 1998) being indicative of iron limited diatoms (Moffett et al., 2015).  

Presumably, these elevated N:Fe and N:Si ratios are derived from upwelling of Fe and Si 

depleted water from depth, though the specific origin/depth of these source waters 

appears to be unknown. 

 

In situ measurements reported by Naqvi et al. (2010) and Moffett et al. (2007) confirm 

low Fe concentrations and also low Si concentrations in upwelled water off the coast of 

Oman during the SWM.  Naqvi et al. (2010) argue that these shifts in nutrient 

stoichiometry and limitation tend to inhibit diatom growth and promote, instead, blooms 

of smaller phytoplankton species.  Such a shift in species composition potentially reduces 

vertical export to the deep ocean and would favor, instead, lateral advection of organic 

matter into the northern and central Arabian Sea (McCreary et al., 2013).  In these deeper 

offshore waters, particle scavenging would tend to reduce the capacity for “local” 

retention of dissolved iron via remineralization, thus further contributing to Fe limitation.  

Naqvi et al. (2010) have suggested that the western Arabian Sea transitions to a High 

Nutrient Low Chlorophyll (HNLC) Fe-limited state during the SWM (as is observed, for 

example, in the eastern equatorial Pacific; Landry et al., 1997).  In support of this HNLC 

hypothesis, Moffett et al. (2015) report up to 6-fold increases in chlorophyll 
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concentration in iron addition experiments on water samples from the western Arabian 

Sea. Interestingly, samples from within an upwelling filament that originated off Oman 

exhibited the strongest response to these enrichment experiments. Finally, with the 

depleted Si availability in upwelled waters, the dominant phytoplankton species apparent 

in these experiment responses was Phaeocystis sp., rather than diatoms (Moffett et al., 

2015), thus lending credence to the silicate limited response reported for the modeling 

efforts of Koné et al. (2009).  

 

Finally, it should be noted that surface nutrient measurements reveal significant quantities 

of unused total inorganic nitrogen during the SWM in the western Arabian Sea (Morrison 

et al., 1998), which supports the HNLC hypothesis. However, whether or not the western 

Arabian Sea transitions to true HNLC conditions during the SWM remains a subject of 

debate.   Indeed, the high chlorophyll concentrations that develop off the coasts of 

Somalia, Yemen and Oman (> 40 mgChla m
-2

) can hardly be described as “low 

chlorophyll”. Further effort will be required to fully understand the role of iron as a 

limiting micro-nutrient in the northwestern Indian Ocean.  

 

Off the west coast of India during the SWM the upwelling-favorable West India Coastal 

Current induces upwelling of nutrients adjacent to and over the West Indian shelf, which 

enhances phytoplankton concentrations by more than 70% compared to the central 

Arabian Sea (Kumar et al., 2000; Naqvi et al., 2000; Luis and Kawamura, 2004).  

However, the increases in chlorophyll and their offshore extent are modest compared to 

the western side of the basin (Figure 2 and Figure 5).  The elevated phytoplankton 

concentrations near the coast are associated with increases in the abundance of diatoms 

(Sawant and Madhupratap, 1996). In contrast, during the NEM the downwelling-

favorable West India Coastal Current tends to suppress primary production over the 

southwestern Indian Shelf.   The depletion of nutrients in this region during the NEM 

coincides with development of blooms of Trichodesmium and also several dinoflagellate 

species including Noctiluca (Parab et al., 2006; Matondkar et al., 2007).  However, 

further north and offshore, nutrient entrainment enhances phytoplankton biomass and 

primary production during the NEM (Wiggert et al., 2000; McCreary et al., 2001; Luis 
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and Kawamura, 2004; Figure 5; Figure 6), and this has been associated with increased 

diatom abundance (Banse and McClain, 1986; Sawant and Madhupratap, 1996). (It 

should be noted, however, that, in the last decade, there appears to have been a shift in 

the composition of winter phytoplankton blooms in the northern Arabian Sea from 

diatom dominance to blooms of a large, green mixotrophic dinoflagellate, Noctiluca 

scintillans; Gomes et al., 2014). Off the west coast of India, The vertically-integrated 

primary production and near-surface chlorophyll-a estimated from satellite ocean color 

measurements (both averaged over the entire western India Shelf) increases from ~1 to 

2.25 g C m
-2

 d
-1 

and from ~9 to 24 mgChla m
-2

, respectively, from winter to the summer 

monsoon (Luis and Kawamura, 2004; Figure 5; Figure 6).  The enhanced productivity 

during the SWM is modulated by the previously discussed remotely-forced coastal 

Kelvin waves from the Bay of Bengal that propagate along the West Indian Shelf and 

modify circulation patterns and upwelling (Luis and Kawamura, 2004).  

 

Satellite ocean color observations suggest that phytoplankton pigment concentrations are 

relatively low all year-round in the Laccadive Sea in spite of the transition from anti-

cyclonic upwelling circulations during the SWM to cyclonic downwelling circulations 

during the NEM (Lierheimer and Banse, 2002; Figure 5).  Thus, it appears that the 

elevated chlorophyll concentrations and production rates caused by the upwelling off 

India during the SWM are largely restricted to the shelf.  However, there are occasional 

large, zonal increases in chlorophyll that extend into the Laccadive Sea (Lierheimer and 

Banse, 2002).  Whether or not there are cryptic subsurface phytoplankton blooms 

associated with the Laccadive Low upwelling is unknown. 

 

2.3.4 Higher trophic level impacts and speculation 

 

Microzooplankton and mesozooplankton grazing are both very important in the high-

nutrient coastal aresa off of Oman during the SWM where the former can exceed 50% of 

total grazing.  In contrast, microzooplankton grazing tends to dominate (> 80%) in the 

more oligotrophic offshore waters (Brown et al., 1999).   Inverse and network analyses of 

multiple data sets collected during the JGOFS Arabian Sea Process study have suggested 
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that for most stations and seasons zooplankton grazing does not equal net phytoplankton 

production and that picophytoplankton production is an important and frequently 

dominant component of export (Richardson et al., 2006).  It has been argued that this 

picophytoplankton domination of export is manifested through aggregation-related 

increases in sinking rate or consumption of picophytoplankton aggregates by 

mesozooplankton or salps (Richardson et al., 2006). These results contrast with the 

conventional ‘‘microbial loop’’ view that picophytoplankton production is predominantly 

recycled within the euphotic zone, and they suggest that primary production by the 

smallest algal cells is connected directly to export pathways via detritus and 

mesozooplankton.  It should be noted, however, that subsequent studies indicate that the 

data from the JGOFS Arabian Sea Process Study are consistent with balanced production 

and grazing rates (Landry, 2009).  Moreover, the idea that grazing is not coupled to 

primary production is incompatible with other results that are reported above, such as the 

similarity of the Arabian Sea to the HNLC equatorial Pacific, and below, such as the idea 

that Calanoides carinatus grazing can suppress phytoplankton growth during the SWM 

in the western Arabian Sea.  

 

The dramatic reversals in the boundary currents and associated changes in upwelling and 

primary production in the northern Indian Ocean have led to the evolution of adaptive 

behaviors in higher trophic level species.   For example, the crustacean zooplankter 

Calanoides carinatus migrates from hundreds of meters depth to the surface during the 

SWM in the western central Arabian Sea to feed when surface chlorophyll concentrations 

are high (Idrisi et al., 2004). Increases in C. carinatus nauplii have also been observed off 

the coast of Somalia during the SWM (Smith, 1992); this appears to represent a 

behavioral reproductive response to upwelling-enhanced chlorophyll concentrations.  It 

has been suggested that grazing control by this species reduces accumulation of 

phytoplankton biomass in response to upwelling of nutrients during the SWM and that 

downward migration before the end of the SWM enhances phytoplankton concentrations 

and export due to the release of zooplankton grazing pressure (Smith, 2001).   
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We can expect that coastal fish species in the western Arabian Sea have evolved 

reproductive strategies that maximize the overlap between first-feeding larvae and the 

relatively predictable monsoon-driven periods of high productivity (Cushing, 1990).   For 

example, analysis of the reproductive cycle of the kingfish (Scomberomorus commerson), 

which is one of the keystone species of the traditional fisheries along the Gulf of Oman, 

reveals a single spawning period, peaking in May/June just prior to the onset of the SWM 

(Claereboudt et al., 2004).   Presumably, this behavior has evolved so that kingfish larvae 

can take advantage of the high productivity and high abundance of copepods associated 

with the SWM.   

 

On the opposite side of the Arabian Sea, seasonal reversals in the winds and the West 

India Coastal Current and associated changes in upwelling intensity have profound 

impacts on oxygen concentrations and therefore higher trophic levels on the shelf off 

western India (Naqvi et al., 2000; Naqvi et al., 2006; Naqvi et al., 2009).  From June to 

November, cold, saline, low oxygen (~22 M) waters upwell onto the shelf.  These 

waters are usually capped by a thick (5-10 m) warm, low-salinity layer of water derived 

from SWM-driven terrestrial runoff and local precipitation, which results in strong 

density stratification and poor ventilation of sub-pycnocline waters.  This, in turn, results 

in depletion of oxygen concentrations to near-zero levels over the shelf where oxygen 

consumption is supported by both the upwelling and anthropogenically-enhanced 

terrestrial nutrient inputs (Naqvi et al., 2000).  During the boreal fall (September-

October) these low oxygen waters can be found over almost the entire western Indian 

shelf (Figure 9).   These waters have deleterious impacts on both benthic and pelagic 

organisms and biodiversity on the shelf, including commercially important species, and 

they have been implicated in massive fish kills in the coastal zone (Naqvi et al., 2006; 

2009). 

 

Consistent with the satellite surface chlorophyll observations, acoustic and trawl surveys 

of zooplankton and micronekton (myctophid fishes, euphausiids and oceanic squids) 

abundance off of the southwest coast of India reveal much higher biomass in all of these 

groups along the continental shelf compared to the Laccadive Sea (Silas, 1972).  
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However, interestingly, the estimated mean standing stock of zooplankton in the 

Laccadive Sea increases sharply (by more than a factor of two) in July and August 

compared to other months of the year (Silas, 1972) revealing, perhaps, a higher trophic 

level response to the anti-cyclonic, upwelling favorable Laccadive Low that develops 

during the SWM.  Whether or not these increases in zooplankton biomass significantly 

impact micronekton is unknown. 

 

The northern Indian Ocean is also home to some of the largest fish stocks in the world. 

For example, the mesopelagic myctophid fish stock in the Arabian Sea has been 

estimated at 20-100 million tons with a potential yield of ~200,000 tons per year  

(Gjøsaeter 1981; Catul et al., 2011).  Although there is considerable uncertainty in these 

estimates (Irigoien et al., 2013; T. Stromme, personal communication), it is likely that 

these myctophids have also evolved behaviors to deal with these dramatic monsoon-

driven changes in Arabian Sea boundary currents, upwelling, productivity and food 

supply.  There is also a potential linkage between myctophid behavior, the presence of 

oxygen minimum zones (OMZs), and boundary current processes via upwelling and 

downwelling influences on primary production, and export of particulate matter to the 

deep ocean.  Through diurnal vertical migration, myctophids appear to use the OMZs as 

refuges from higher trophic level predators (Herring et al., 1998; Gjøsaeter, 1984; Kinzer 

et al., 1993).  The enhanced primary production associated with upwelling favorable 

boundary currents during the SWM contributes to the biological oxygen demand that 

results in the formation of these OMZ refuges in the Arabian Sea (McCreary et al., 2013).  

These currents are also involved in both alongshore and offshore transport of organic 

matter and eddy-driven mixing that ventilates upper ocean waters, both of which are 

likely to impact the 3-dimensional distributions of the OMZs (McCreary et al., 2013).  

Thus, there is most likely a linkage between the boundary current reversals, upwelling 

variability and multiple higher trophic level behavioral responses and trophic interactions 

in the northern Indian Ocean.   

 

2.4 The Bay of Bengal and the eastern Indian Ocean 

 

2.4.1 General physical attributes 
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The seasonally reversing currents in the Bay of Bengal and the eastern Indian Ocean that 

are considered here include the Northeast Monsoon Current that traverses westward 

offshore around the southern tip of India and Sri Lanka during the NEM, the East India 

Coastal Current that hugs the east coast of India, and the South Java Current along 

Indonesia (Figure 1). 

 

The East India Coastal Current is the Bay of Bengal counterpart to the West India Coastal 

Current. It transports ~10 Sv of relatively salty water northward during the Spring 

Intermonsoon (February through May) and SWM (Figure 1) when the hydrography is 

similar to many of the features that have been associated with the western boundary 

currents of the subtropical gyres (Shetye et al., 1993).   During the NEM, this current 

reverses, carrying 2-8 Sv of less saline water southward (Figure 1) (Shetye et al., 1996).   

To some degree, the East and West India Coastal Currents that bookend the Indian 

subcontinent provide linkages between the two sub-basins of the Northern Indian Ocean 

via the Southwest Monsoon Current and Northeast Monsoon Current, which traverse the 

coasts of India and Sri Lanka during their respective monsoon seasons. During the NEM 

the Northeast Monsoon Current flows from the southern part of the Bay of Bengal, 

merges with the equatorward flowing East India Coastal Current as it rounds Sri Lanka, 

and then turns to the north as it wraps around the western edge of the anticyclonic 

Laccadive High (Bruce et al., 1998; de Vos et al., 2014; Figure 1).  During the SWM the 

Northeast Monsoon Current is replaced by the Southwest Monsoon Current, which flows 

in the opposite direction (see section 2.3.1 above).  Off southern Sri Lanka the transport 

estimates for the Southwest Monsoon and Northeast Monsoon Currents are 8 Sv and 12 

Sv, respectively (Schott and McCreary, 2001). 

 

In the eastern Indian Ocean, the South Java Current (Figure 2) is particularly complex 

due to multiple influences.  These include remote forcing associated with southeastward 

propagating coastal Kelvin waves generated by wind forcing over the equatorial Indian 

Ocean, and regional Southeast Monsoon (SEM) forcing and freshwater fluxes from the 

ITF (Quadfasel and Cresswell, 1992; Sprintall et al., 1999; Iskandar et al., 2005). During 

the SEM period (June through October), the flow of the South Java Current is generally 
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northwestward with an estimated transport of ~3 Sv over the upper 100 m (Quadfasel et 

al., 1996; Sprintall et al., 1999).  Persistent, topographically-locked eddies and filaments 

develop in the South Java Current during the SEM in association with, for example, the 

southward ITF flow through Lombok strait (Figure 10).  In November, the flow returns to 

a southeastward direction as Northwest Monsoon (NWM) forcing now acts in concert 

with the coastal Kelvin wave associated with the arrival of the (boreal) fall Wyrtki Jet.  

During these periods, the downwelling favorable flow extends to ~150 to 250 m depth 

with a transport of ~3-4 Sv (Meyers et al., 1995; Fieux et al., 1996; Schott and McCreary, 

2001).  However, transport time series of the South Java Current near the Sunda Strait 

have revealed considerable interannual variability with transports occasionally up to 10 

Sv (Meyers, 1996).  

 

South of the equator, Sumatra’s coastal boundary current is primarily influenced by local 

wind forcing and remote forcing responses that propagate in from the equatorial Indian 

Ocean. The bulk of the remote response manifests as downwelling southeastward-

propagating Kelvin waves that result as a consequence of semiannual Wyrtki Jet 

impingements that occur in May and November (Quadfasel and Cresswell, 1992). 

Coastal Kelvin waves along Sumatra can also be triggered by intraseasonal forcing in the 

form of near-equator westerly wind bursts, known as the Madden-Julian oscillation 

(Potemra et al., 2002). Signatures of these downwelling waves propagating along the 

coastal waveguide is evident in SSH measurements for the Lombok and Ombai straits 

(Iskander et al., 2014). The regional monsoonal cycle influences these semiannual and 

intraseasonal remote forcing impacts; during the SEM, local winds drive coastal 

upwelling that diminshes the downwelling aspect of the noted Kelvin waves. Further, 

upwelling Kelvin waves initiated by easterly wind bursts, which modulate the typical 

conditions just discussed, have been identified; however comprehensive observation and 

study remains to be done to clearly characterize their impacts (Drushka et al., 2010; 

Iskander et al., 2014). During Indian Ocean Dipole (IOD) events the northwest 

propagation of the South Java Current appears to be reinforced. This is a result of 

anomalous southeasterly winds over the southeastern Indian Ocean and the fact that the 

fall Wyrtki Jet does not manifest or is significantly diminshed (Wiggert et al., 2009; see 
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section 2.4.3 below for in depth discussion of the IOD phenomenon and its 

biogeochemical impacts). 

 

2.4.2 Upwelling and downwelling variability and mesoscale activity 

 

In the Bay of Bengal, the effects of the winds and the currents tend to be more cryptic, in 

part due to the influence of large freshwater inputs from rivers to the north (i.e., the 

Ganges-Brahmaputra and Irrawaddy), with upwelling sometimes occurring at depth but 

with no expression at the surface (Gomes et al., 2000; Vinayachandran et al., 2005).  

Some outcropping of upwelled water is observed at the surface along the eastern coast of 

India between 10° and 20° N in association with the upwelling-favorable, poleward-

flowing East India Coastal Current during the spring intermonsoon (Gomes et al., 2000; 

Figure 11). This upwelling is enhanced during the SWM when upwelling favorable winds 

are coincident with the poleward-flowing current (Plant, 1992; Gomes et al., 2000; Figure 

5).  This region is also associated with modest increases in eddy kinetic energy during the 

SWM (Figure 3).  However, satellite imagery shows that the influence of upwelling off 

the east coast of India is confined to a very narrow band near the coast and is much less 

pronounced in its spatial extent at the surface compared with the Arabian Sea (Wiggert et 

al., 2006; Figure 5 and Figure 11).   

 

During both monsoon periods waters in the southwestern Bay of Bengal exhibit 

upwelling signatures and elevated chlorophyll concentrations (Figure 5) due to the 

interaction of the monsoonally reversing currents with Sri Lanka.  Currents along the east 

and west coast of Sri Lanka propagate southward, converging along the island’s southern 

coast with subsequent divergence associated with the offshore transport of water and 

contributing influence by the prevailing winds (de Vos et al., 2014).  The upwelling and 

mesoscale variability in this region is particularly strong during the SWM when the 

eastward flow associated with the Southwest Monsoon Current develops a lee eddy 

commonly known as the Sri Lanka Dome, an upwelling recirculation that is reinforced by 

the overlying wind curl field (Vinayachandran et al., 2004; de Vos et al., 2014; Figure 

12).    
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Off Indonesia, along the south coasts of the Sunda Islands, upwelling effects are strongly 

manifested as cold water at the surface in association with the northeastward-flowing 

upwelling favorable South Java Current and upwelling-favorable SEM (June through 

October) winds (Figure 10; Sprintall et al., 1999).  This upwelling develops most 

significantly along the island chain stretching from southern Sumatra, Java, Bali, 

Lombok, Flores to Alor (Figure 10). The cool temperature signal of upwelling occurs 

first to the east of Lombok Island from late April to early May, then it proceeds westward 

along the south Java coast, reaching to the Sunda Strait in late June. From there it further 

progresses northwest to the west coast of the southern part of Sumatra in early August 

(Yu et al., 2016). At this time, peak upwelling is achieved with the strongest SST cooling 

located south of Java (Figure 10). In contrast, the retreat of upwelling is very rapid and 

simultaneous in October across the whole island chain, and is reinforced by the arrival of 

the fall Wyrtki Jet and subsequent downwelling coastal Kelvin Wave that propagates 

along the Sumatra and Java coasts (Iskander et al., 2005; Yu et al., 2016).   

 

The Java-Sumatra upwelling area is also a region of enhanced mesoscale eddy activity, 

which is revealed in AVISO-derived eddy kinetic energy estimates (Figure 3).  In 

addition, this region is associated with the major outflow straits of the ITF (Sunda, 

Lombok, Ombai and Timor) where topographically controlled mesoscale eddies play an 

important role in offshore transport of upwelled properties (e.g., Iskandar et al., 2010). 

 

2.4.3 Impacts on primary production 

 

Large inputs of freshwater in the Bay of Bengal from rivers and the resulting enhanced 

stratification act to inhibit upwelling-induced nutrient enrichment of surface waters 

(Madhupratap et al., 2003).  In addition, although the supply of riverine borne nutrients 

(nitrate, phosphate and silicate) to the coastal zone of eastern India is large in the upper 

layers (up to 20 m) of the water column during the SWM, it is not observed to enhance 

the phytoplankton production rates to a large extent (Madhupratap et al., 2003; Madhu et 

al., 2006). Madu et al. (2006) report average primary production in the coastal waters of 

the eastern Bay of Bengal at ~350 mgC m
-2

 d
-1

 in summer, ~250 mgC m
-2

 d
-1

 in winter 

and ~300 mgC m
-2 

d
-1

 in spring intermonsoon periods, with diatoms dominating 
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phytoplankton abundance irrespective of seasons, and Trichodesmium erythraeum 

blooms developing in during the intermonsoon periods along with Synechococcus and 

heterotrophic dinoflagellate associations (Jyothibabu et al., 2008).  

 

However, chlorophyll-a and primary production can be substantially increased over the 

shelf along the East Indian coastline by upwelling favorable boundary currents and/or 

winds.  During the late spring intermonsoon period, the poleward-flowing East India 

Coastal Current brings nutrient-rich deep waters up toward the surface which gives rise to 

significant increases in phytoplankton biomass (~ 30 mgChla m
-2

) and production (~ 1 gC 

m
-2

 d
-1

) near the coast (Gomes et al., 2000; Figure 11).  This upwelling has been shown to 

stimulate nearly monospecific diatom blooms in coastal waters (Sasamal et al., 2005).  

Wind-driven coastal upwelling (perhaps in combination with increased river-borne 

nutrient loads) during the following SWM season further increases phytoplankton 

biomass (> 100 mgChla m
-2

).  However, lower productivity occurs during this time 

(~0.55 gC m
-2

 d
-1

), which suggests potential light limitation due either to cloud cover or 

increased turbidity (Gomes et al., 2000).  In addition, modeling studies suggest that 

cryptic upwelling in Bay of Bengal coastal waters can also give rise to increased primary 

production during the SWM (Vinayachandran et al., 2005).  Cryptic upwelling may be a 

common phenomenon in the Bay of Bengal where freshwater inputs tend to inhibit 

surface outcropping of upwelled water.   

 

Satellite observations reveal that phytoplankton biomass and productivity near the coast 

is suppressed during the NEM when the East India Coastal Current flows equatorward 

(Figure 1; Figure 5; Figure 6).  Presumably, this is due to a combination of the 

downwelling-favorable flow of the East India Coastal Current and downwelling-

favorable winds. However, primary production over the shelf in the northern part of the 

Bay increases during the NEM (Gomes et al., 2000), possibly due to wind- and/or 

buoyancy-driven entrainment as is observed in the northern Arabian Sea during the NEM 

(Wiggert et al., 2000; 2005). 
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Although upwelling occurs along the southern coast of Sri Lanka during both monsoon 

periods the phytoplankton biomass and productivity response is much more pronounced 

during the SWM (de Vos et al., 2014, Figure 5; Figure 6; Figure12).  Satellite SST and 

chlorophyll images reveal dramatic eastward advection of cool (< 28° C) chlorophyll rich 

upwelled water by the Southwest Monsoon Current (Vinayachandran, 2004; de Vos et 

al., 2014; Figure 12).  Chlorophyll-rich waters from the southwestern coast of India are 

also advected by the Southwest Monsoon Current towards Sri Lanka during the SWM 

(Vinayachandran, 2004; Strutton et al., 2015). Satellite-derived surface chlorophyll 

concentrations along the southern coast of Sri Lanka can exceed 10 mgChla m
-3

 in 

July/August during the SWM, compared to much lower concentrations in January during 

the NEM when the Northeast Monsoon Current flows westward (de Vos et al., 2004; 

Figure 5).  Similarly, satellite estimates of primary production suggest rates in excess of 1 

g m
-2

 day
-1

 in August along the southern and western coasts of Sri Lanka, and along the 

southern tip of India, compared to much lower values in January (Figure 6).  

Vinayachandran (2004) attributes the productivity response during the SWM to nutrient 

enrichment from coastal upwelling driven by monsoon winds. Presumably, these high 

chlorophyll concentrations and production rates are associated with diatom blooms.  

Interestingly, however, the model results of Wiggert et al. (2006) suggest the potential for 

Fe limitation in these upwelling waters (Figure 8), which begs the question of whether or 

not there might be Si limitation as well, which would tend to inhibit diatom growth.  

 

Upwelling enhanced chlorophyll and primary production are also observed along the 

southern coast of Indonesia in association with the northwestward-flowing, upwelling-

favorable South Java Current and upwelling-favorable SEM (June through to October) 

winds (Figure 5; Figure 6; Figure 13).   Monthly satellite climatologies show elevated 

chlorophyll-a concentrations (> 2 mgChla m
-3

) off of Java first appearing in June and 

persisting into November (Figure 12) with primary production rates > 1 mgC m
-2

 day
-1

 in 

August (Figure 6).  As discussed above, the relaxation of the SEM winds, combined with 

the passage of downwelling Kelvin waves associated with the arrival of the Wyrtki Jets 

(Sprintall et al. 1999) suppresses upwelling and, presumably, the productivity response in 

the late fall.   Satellite climatologies also reveal that this upwelling-enhanced 
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phytoplankton biomass progresses northwestward during the SEM extending to the 

southwestern coast of Sumatra in September (Figure 12).  Video plankton recorder 

imagery collected in the upwelled water off of Java during the SEM reveal that these 

elevated chlorophyll concentrations are associated with diatom blooms, e.g., “coil-

shaped” chain-forming species (Yu et al., 2016; C. Davis, personal communication).  

 

The upwelling regions off Sumatra, Java and Timor are almost certainly influenced by 

nutrient inputs associated with the ITF flows through the Lombok and Ombai Straits. 

Nutrient measurements collected during the World Ocean Circulation Experiment 

(WOCE line IR06, 1989) along a transect from the northwestern coast of Australia to 

Lombok Strait reveal the upwelling signature off of Java in both nitrate and phosphate 

distributions (Figure 14).  The absolute N:P ratio of ~13.75 estimated from 200 m depth 

on the northern end of the transect, reveals what appears to be a denitrification and/or 

anammox signature. This signature may reflect the influence ITF source waters derived 

from shallow Indonesian Seas where sediment dentrification and/or anammox could 

result in nitrogen removal. 

 

Interannual modulation of the impact of these currents and upwelling on phytoplankton 

biomass and production off Java (and Sumatra) can be clearly seen in ocean color data in 

association with the IOD (Wiggert et al., 2009; Currie et al., 2013).  The IOD is an 

aperiodic coupled ocean and atmosphere phenomenon in the equatorial Indian Ocean that 

is associated with anomalous SST, wind and precipitation patterns (Saji et al., 1999).  A 

positive (negative) IOD period is characterized by cooler (warmer) than normal water in 

the tropical eastern Indian Ocean and warmer (cooler) than normal water in the tropical 

western Indian Ocean.  During positive IOD events unusually strong upwelling-favorable 

winds develop in the eastern Indian Ocean during the SEM.  This, combined with a 

weakened or absent fall Wyrtki Jet, which allows for an anomalously shallow 

thermocline, results in unusually high chlorophyll-a concentrations off of Java and 

Sumatra. Indeed, during the 1997/1998 IOD, these conditions triggered a massive 

phytoplankton bloom in the eastern tropical Indian Ocean that extended from Sumatra 
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westward to 65 °E, with atypical bloom signatures that persisted into January/February 

(Murtugudde et al., 1999; Wiggert et al., 2009). 

 

 

2.4.4 Higher trophic level impacts and speculation 

 

Although there have been numerous studies documenting the impacts of the East India 

Coastal Current and upwelling on phytoplankton biomass and production  (Gomes et al., 

2000; Plant, 1992; Madhupratap et al., 2003; Chaturvedi, 2005; Sasamal et al., 2005; 

Madhu et al., 2006; and references cited therein), there is very little published 

information on higher trophic level impacts beyond linkages to zooplankton biomass and 

species composition.  We know that the microzooplankton community in the coastal zone 

of the western Bay of Bengal is numerically dominated by heterotrophic dinoflagellates 

and ciliates with the highest abundance and diversity occurring during the spring inter-

monsoon (Jyothibabu et al., 2008).  In addition, historical surveys show that copepod 

abundance during the SWM increases dramatically over the East Indian shelf between 

10 and 20 N (Stephen, 1992; Nair et al., 1977).  Presumably, these increases are linked 

to the increases in coastal primary production that are associated with upwelling and the 

northward-flowing East India Coastal Current (Gomes et al., 2000).  More recently, 

changes in zooplankton community structure in the coastal zone have been linked to the 

influence of upwelling eddies generated by the East India Coastal Current during the 

spring intermonsoon (Rakhesh et al., 2008).  Specifically, this study documented the 

impact of a recurring, cyclonic, cold-core eddy generated by the East India Coastal 

Current that enriches coastal waters in the western Bay of Bengal north of 16°N during 

the spring intermonsoon.  These observations reveal distinctly altered zooplankton 

species composition in the upwelled water associated with coastal current eddies, and 

apparent top-down control of diatoms that resulted in increased abundance of 

dinoflagellates.  

 

There are even fewer published studies of higher trophic level responses to monsoonal 

forcing in the coastal zone of Sri Lanka.  The coastal zone of Sri Lanka supports a rich 
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pelagic fishery that varies seasonally in response to monsoon-driven changes in 

upwelling and primary and secondary production (Joseph, 1975).  Catch per unit effort 

(CPUE) for small pelagic fishes (e.g., sardine, herring, anchovy and mackerel) increases 

dramatically during the monsoons with highest CPUE observed during the SWM (Joseph, 

1975).   Although zooplankton are a major food source for these pelagic fishes and their 

larvae, there are few (if any) published data on zooplankton distributions, abundance and 

seasonal fluctuations in relation to environmental parameters that are needed to 

understand what drives seasonal variations in pelagic fishery resources in Sri Lankan 

coastal zones.  All we can do is speculate (with some confidence) that there are 

commensurate seasonal fluctuations in zooplankton biomass and productivity associated 

with the satellite-observed seasonal changes in temperature, chlorophyll and primary 

production, and that zooplankton biomass and productivity are particularly high during 

the SWM when coastal upwelling is most intense off of Sri Lanka (Vinayachandran, 

2004; de Vos et al., 2014, Figure 12). 

 

Interestingly, although chlorophyll concentrations during the NEM are low compared to 

the SWM along the southern coast of Sri Lanka, feeding aggregations of blue whales 

(Balaenoptera musculus) occur in this region during the NEM, likely in response to the 

NEM-driven increases in primary and secondary production discussed above (Joseph, 

1975; Alling et al., 1991; de Vos et al., 2014).  Numerous whales are sighted along the 

southern coast of Sri Lanka during the NEM and there is a well-developed whale 

watching tourism industry in the region (Alling et al., 1991; de Vos et al., 2014). 

However, very little is known about the environmental factors that influence the 

distribution of blue whales in these waters. 

 

Mooring-derived ADCP estimates of backscatter intensity in the South Java Current 

indicate that there are distinct seasonal increases in biomass and upward vertical 

migrations of crustacean zooplankton during the upwelling-favorable SEM period (Wang 

et al., unpublished) that are, perhaps, similar to the monsoon-driven seasonal migrations 

of C. carinatus that have been observed in the western Arabian Sea (Iridisi et al., 2004; 

Smith, 1992; 2001).  It is possible that this seasonal migration impacts primary 
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production and export in the Java Current as well.  SEM-driven increases in production 

associated with upwelling in the Java Current are also linked to increases in sardine 

(Sardinella leumuru) catch and (presumably) production in Bali Strait (Ghofar, 2005 ).  

The IOD-driven interannual variations in the strength of this current and the intensity of 

upwelling give rise to dramatic interannual variations in sardine catch, which impact 

supply relative to demand and therefore market prices (Sartimbul et al., 2010).     

 

Relatively little is known about the impacts of boundary currents and upwelling on 

pelagic food webs supporting fisheries in the open ocean region between Indonesia and 

northwestern Australia, which is the only known spawning ground for southern blue fin 

tuna (Thunnus maccoyii) (Davis et al., 1989; Farley and Davis, 1998; Matsuura et al., 

1997).  This region is also a major spawning and fishing area for other tuna species. It is 

an area of complex currents and strong seasonal changes in upwelling and production 

associated with variation in monsoonal forcing and the influence of planetary waves.  The 

region is also strongly influenced by freshwater and nutrient inputs from the ITF (Talley 

and Sprintall, 2005; Ayers et al., 2014).  Satellite observations have shown strong eddy 

activity in the Lombok Strait area off southern Java during the SEM upwelling season 

(June through October) resulting in physical transport of chlorophyll-rich eddies directly 

south into the tuna-spawning region (Yu et al., 2016). Tuna may thus derive significant 

resource subsidy from offshore transport of seasonal upwelling production by these 

coastally-shed eddies that are associated with the South Java Current. The challenge is to 

understand the role of this offshore transport, along with all of the other potential 

influences, in providing resources and habitat for fish recruitment (Yu et al., 2016).  

 

3. The Southward-Flowing Leeuwin Current 

 
3.1 General physical attributes 

 

The waters for the Leeuwin Current come from three main sources: 1) from the northeast 

through the Indonesian Throughflow (ITF) via the seasonal Holloway Current off of 

northwest Australia; 2) from the north via the South Equatorial Current; and 3) from the 

west via the Eastern Gyral Current (Domingues et al., 2007; Figure 15).  As a result of 
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these tropical sources, which are subject to both low latitude warming and high 

precipitation, the Leeuwin Current emerges further south as a warm (Figure 16) and less 

saline current compared to adjacent surface water masses (Weller et al. 2011).   The 

Leeuwin Current is relatively small compared to other eastern boundary currents, 

extending to a depth of only ~300 m with a transport < 5 Sv (Schott and McCreary, 

2001).   However, the Leeuwin Current has the largest eddy kinetic energy among all 

mid-latitude eastern boundary current systems (Figure 3; Feng et al., 2005).  This induces 

strong cross-shelf transport (Figure 16, 17 and 18), particularly during the austral autumn 

and winter in the shelf region between ~27 S and 33 S (Feng et al., 2005; Feng et al., 

2007; Feng et al., 2010).  The Leeuwin Current becomes increasingly coherent, 

coalescing into a shelf-edge current as it flows southward, around Cape Leeuwin and then 

eastward along the Great Australian Bight towards Tasmania (Figures 15 and 16; 

Ridgway and Condie, 2004). 

 

3.2 Local versus remote forcing and seasonality 

 

The southward flow of the Leeuwin Current is driven by the large-scale pressure gradient 

that is set up by the ITF, which is, in turn, generated by the large-scale pressure gradient 

between the Pacific and Indian Oceans (Godfrey and Ridgway, 1985; Smith et al., 1991).   

The Leeuwin Current does not reverse seasonally like the northern Indian Ocean 

boundary currents.  However, there is significant seasonal variability in Leeuwin Current 

transport with the largest flows occurring in austral winter and the smallest flows 

occurring in austral summer (Smith et al., 1991; Feng et al., 2003; Feng et al., 2010).  

Ridgway and Godfrey (2015) argue that this seasonality is driven by an annual sea level 

signal that propagates around the shelf edge waveguide extending from tropical waters 

off northwestern Australia to southern Tasmania. Apparently, this wave originates from a 

sea level pulse that emerges from the Gulf of Carpenteria (north-eastern Australia) during 

December–February that is forced by the seasonally reversing monsoon winds. The 

autumn-winter enhancement of the Leeuwin Current results from the geostrophic 

adjustment to the seasonal increase in the cross-shelf gradient of SSH as the wave 

progresses around the coastal waveguide. The timing of the appearance of this sea level 
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pulse results in a March-April peak in southwestward transport off northwest Australia 

and a June peak in southward transport at Fremantle.   

 

Inter-annual and decadal variability of the Leeuwin Current is largely driven by tropical 

Pacific climate variability (Feng et al., 2013).  As a result, ENSO-driven fluctuations in 

the strength of southeast trade winds in the Pacific Ocean have an impact on the strength 

of the Leeuwin Current.  Remotely forced ENSO-driven upper ocean disturbances 

propagate poleward as internal coastal Kelvin waves along the coast of Western Australia 

(Meyers, 1996).  These generate higher coastal sea levels and induce strong Leeuwin 

Current flow in La Niña years and weaker flow in El Niño years (Pearce and Phillips, 

1988; Feng et al., 2003; Feng et al. 2005). Interannual variability in the Leeuwin Current 

is also driven by “Ningaloo Niño” events. These are associated with positive sea surface 

temperature anomalies off the west coast of Australia during El Niño and negative 

anomalies during La Niña (Doi et al., 2013; Feng et al., 2013; Kataoka et al., 2013). 

Ningaloo Niño events develop during October through December, they reach a peak in 

January-February, and then they decay (Doi et al., 2013).  Long-term coral records reveal 

the existence and impact of ENSO and Ningaloo Niño/Niña events going back more than 

200 years (Zinke et al., 2014).   

 

3.3 Upwelling and downwelling variability 

 

The Leeuwin Current is downwelling-favorable because the Coriolis effect on the 

southward flow in the southern hemisphere forces the current eastward toward the coast 

(Smith et al., 1991; Hanson et al., 2005a; Hanson et al., 2005b).   This tends to suppress 

upwelling, and manifests as downward sloping isopycnals along the coast (Feng et al., 

2003).  However, local wind forcing can override this general tendency and drive 

upwelling and current reversals (Gersbach et al., 1999; Pearce and Pattiaratchi, 1999; 

Hanson et al., 2005a; Hanson et al., 2005b, Rossi et al., 2013a; 2013b).  This happens, in 

particular, during the austral summer when the Leeuwin Current transport is low and 

upwelling-favorable southerly winds occur.  This materializes, for example, off the 

southwest coast of Western Australia at Cape Mentelle (Figure 15) where localized 

upwelling forms the source of the relatively cool water of the northward-flowing Capes 
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Current (Gersbach et al., 1999), and off Ningaloo Reef near the North West Cape of 

Western Australia (Figure 15) where localized upwelling supplies cool water to episodic 

northward coastal flows (Woo et al., 2006; Xu et al., 2013, Rossi et al., 2013b).   

 

 

3.4 Impacts on primary production 

 

The tropical origins of the Leeuwin Current combine with its downwelling tendency to 

create a warm, oligotrophic current with low productivity.  Seasonal nutrient 

climatologies from the southwestern Australian shelf, the Leeuwin Current and offshore 

show that the surface waters are all low in nitrate (< 0.5 μM) throughout the year (Lourey 

et al., 2006).  This indicates that primary production is nitrogen limited. Relatively low 

levels of phosphate (< 0.25 μM) and silicate (< 2 μM) are observed in the shelf waters. 

Lourey et al. (2006) suggest that the low levels of silicate may limit diatom production.  

In contrast, phosphate concentrations are undetectable in the Leeuwin Current whereas 

silicate concentrations are relatively high (up to 4 μM; Lourey et al., 2006).   Thus, the 

Leeuwin Current appears to be a silicate source to the surrounding waters. The observed 

cross-shelf gradient in chlorophyll-a concentrations (Figure 16; Figure 17; Figure 18) 

indicates that terrestrial nutrient sources and/or near shore coastal upwelling make an 

important contribution to primary productivity (Lourey et al., 2006).  

 

In the Leeuwin Current, chlorophyll-a concentrations are generally < 30 mgChla m
-2

 and 

primary production rates usually do not exceed 0.5 gC m
-2 

d
-1

 (Koslow et al., 2008; 

Lourey et al., 2006; Lourey et al., 2013). Productivity in this current is particularly low in 

summer, when the water column is stratified and subsurface chlorophyll maxima are 

ubiquitous between 50 and 120 m depth (Hanson et al., 2007; Figure 18) as observed 

typically in open ocean subtropical oligotrophic conditions (e.g., Venrick, 1991). 

However, primary production rates in isolated, near shore upwelling regions (e.g., off of 

the North West Cape during summer) can episodically reach very high levels (3–

8 gC m
−2

 day
−1

) characteristic of eastern boundary upwelling zones elsewhere in the 

world (Furnas, 2007).  In general, primary production in the Leeuwin Current is highest 

in the austral fall and winter, coinciding with the period of strongest Leeuwin Current 
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flow and colder surface winds which contribute to increased eddy kinetic energy, vertical 

mixing and entrainment of nutrients from the nutricline into the mixed layer (Lourey, et 

al., 2006; Koslow et al., 2008; Thompson et al., 2011).  During this time period, regions 

of relatively high chlorophyll (>30 mgChla m
-2

) and primary production (> 0.5 gC m
-2 

d
-

1
) are found in association with mesoscale features (Lourey et al., 2013).  Significant 

interannual variability in chlorophyll and primary production is observed in association 

with ENSO and Ningaloo Niño driven changes in the strength of the Leeuwin Current 

(Furnas, 2007; Narayanasetti et al., 2016). 

 

Throughout the year, meanders in the Leeuwin Current generate warm core, anti-cyclonic 

eddies that transport relatively high chlorophyll coastal water offshore (Figure 18).  The 

higher chlorophyll in these eddies is due to the presence of relatively productive coastal 

diatom communities.  These diatoms are advected westward into cooler oligotrophic 

offshore waters that are dominated by small open ocean phytoplankton species (Waite et 

al., 2007a; Paterson et al., 2008; Waite et al., 2015).  These eddies, which can extend to > 

250 m depth (Figure 18), are enigmatic because they are anti-cyclonic, downwelling 

circulations that, in theory, should inhibit the introduction of new nutrients from depth.  

Yet, these eddies, and the higher chlorophyll concentrations associated with them, have 

been shown to persist for months (Feng et al., 2007; Moore et al., 2007; du Fois et al., 

2014).  It has been suggested that the diatom communities in these eddies are supported 

by lateral supply and/or internal nutrient recycling (Waite et al., 2007a; Paterson et al., 

2013; Thompson et al., 2007).  The latter is supported by the vertical scale of these 

features (Figure 18), which is potentially large enough to allow for almost complete 

remineralization of particulate matter generated near the surface before it can sink out 

and be exported through the base of the eddy (Waite et al., 2015).   

 

There is prolific generation of these warm (and cold) core eddies in the Leeuwin Current 

between 20
o
 and 35

o
 S (Gaube et al., 2013).  Most of them propagate directly westward 

and some appear to be quite long-lived (Feng et al., 2005; Feng et al., 2007; Moore et al., 

2007; Gaube et al., 2013; du Fois et al., 2014).  The persistence and potential impacts of 

these eddies in the open ocean have not been fully investigated.    
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3.5 Higher trophic level impacts and speculation 
 

Studies of zooplankton in the Leeuwin Current are limited with only a few covering 

specific taxonomic groups embracing the latitudinal extent of the system (Holliday et al., 

2012; Buchanan and Beckley, 2015; Sutton and Beckley, 2016). However, detailed inter-

annual investigations of both the meso- and macrozooplankton have been conducted over 

the northwest shelf of Western Australia near the headwaters of the current. Cross-shelf 

transects have confirmed an onshore–offshore gradient in copepod community 

composition, with the inshore stations characterized by an abundance of small 

Paracalanidae and Oithonidae (McKinnon et al., 2008). Although copepods are more 

abundant inshore during El Niño conditions when the Leeuwin Current is weaker and 

there is more upwelling and higher primary production, copepod production rates do not 

differ substantially and remain low (Hanson and McKinnon, 2009). Suggested reasons 

for this anomaly include the highly pulsed nature of the upwelling, the strongly advective 

conditions and microbial processes dominating the food web. For the macro-zooplankton, 

during El Niño, distinct inshore and offshore assemblages are also observed that reflect 

the transition from upwelling-enriched shelf waters to the more oligotrophic Leeuwin 

Current waters offshore (Wilson et al., 2003). In contrast, during La Niña conditions, the 

stronger Leeuwin Current and downwelling regime weaken horizontal gradients in 

macro-zooplankton assemblages.  

 

The Leeuwin Current has long been linked with the distribution and transport of biota 

along the west coast of Australia and it plays a crucial role in controlling larval retention 

and dispersal of many coastal species (e.g., Hutchins and Pearce, 1994; Gaughan and 

Fletcher 1997; Caputi, 2008;  Muhling et al., 2008a; Muhling et al., 2008b;  Beckley et 

al., 2009; Feng et al., 2010; Holliday et al., 2012).  Lagrangian particle-tracking studies 

have shown that there is considerable spatial heterogeneity in retention rates along the 

coast and areas of low retention are associated with a narrower shelf, protruding coastal 

geography and strong alongshore currents.  In contrast, areas of high retention are 

sheltered from the direct influence of the Leeuwin Current by coastal geography, e.g., by 

islands and embayments (Feng et al., 2010).  The Leeuwin Current can enhance poleward 
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transport of marine populations and, for example, tropical species are observed in the 

demersal and pelagic fauna of the Great Australian Bight (southern Australia) (Condie et 

al., 2005).  This has been attributed to the transport of tropical larvae and tropical 

conditions by the Leeuwin Current, which after passing Cape Leeuwin flows eastward 

along the southern coast of Australia (Maxwell and Cresswell, 1981; Figure 15).  

However, the high kinetic energy associated with the eddy field of the Leeuwin Current 

between ~27 S and 33 S (Figures 3, 16, 17 and 18) may disrupt long-shore connectivity 

and induce considerable cross-shelf transport (Holliday et al., 2012).  For example, pre-

flexion larvae of coastal anchovies can be advected offshore by such eddies and 

subsequently recorded in deep oceanic waters, far away from their normal shelf 

environment (Holliday et al., 2012).   

 

Detailed studies of an evolving eddy as it formed from a meander in the Leeuwin Current  

(Paterson et al., 2008) showed that neritic fish larvae and krill species could be entrained 

and then, when the eddy detached from the main flow, they were trapped in the 

mesoscale feature with no return pathway to the coast (Holliday et al., 2011; Sutton et al., 

2015).  As these neritic fish larvae generally have pelagic larval durations of less than a 

month, not being able to find a suitable habitat in which to settle would result in larval 

mortality. This has been confirmed by detailed investigations in an older warm-core 

eddy, that detached five months previously and moved westward into the Indian Ocean.  

It contained no neritic fish larvae (Muhling et al., 2007). The fish larvae of the aged eddy 

were predominantly those of mesopelagic oceanic species such as myctophids, which 

may gain particular benefit by spawning in association with these more productive areas 

in the oligotrophic southeastern Indian Ocean (Muhling et al., 2007; Holliday et al., 

2012).  Stable isotope analysis suggests that larval fishes were preferentially targeting 

food sources derived from large phytoplankton carbon such as the large diatoms found in 

the warm-core eddy (Waite et al. 2007b). Interestingly, carnivorous zooplankton, 

particularly chaetognaths, dominated the zooplankton, and this anomalous trophic 

structure may reflect grazing down of the herbivorous/omnivorous component of the 

plankton (Strzelecki et al., 2007; Buchanan and Beckley, 2016).  
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Coastal animals that have long pelagic larval durations (9-11 months), such as the 

Western rock lobster (Panulirus cygnus), can be affected by these productive eddies in 

the oligotrophic southeast Indian Ocean in ways that contrast sharply from the planktonic 

impacts described above. The eddies could transport entrained phyllosoma larvae away 

into the central Indian Ocean or, if the eddy trajectory stalled and remained relatively 

close to the coast, it could reduce the distance necessary for the puerulus larvae to swim 

back to the coast after metamorphosis.  The eddies may also provide a more generous 

food supply for the phyllosoma than the surrounding oligotrophic ocean (Säwström et al. 

2014). Recent field studies have shown that, although ingesting a variety of planktonic 

prey (O'Rorke et al., 2012; Wang et al., 2014), they preferentially select chaetognaths 

from the pelagic smorgasbord (Saunders et al., 2012).  

 

As the Western rock lobster is the target of Australia’s largest and most valuable wild 

caught fishery, a crucial element in projecting catch is the long-term monitoring program 

that records the abundance of puerulus settling on inshore reefs along the west coast 

(mainly between August and January each year) (Phillips 1986; Caputi et al. 2014; Figure 

19). Historically, high rock lobster puerulus settlement has been associated with strong 

Leeuwin Current transport in La Niňa years (Caputi et al., 2001).  Settlement has always 

shown a strong correlation with Leeuwin Current transport and commercial catches of 

lobsters three and four years later.  However, correlations between transport and 

settlement have broken down in recent years (Feng et al., 2011).  It has been suggested 

that successful settlement may be related to more subtle aspects of the Leeuwin transport 

and flow such as the presence or absence of strong landward flows associated with 

meanders in the Current and adjacent waters between 28 and 32 S that could bring the 

larvae back to shore (Säwström et al., 2014).  Recent analysis of environmental variables 

potentially influencing puerulus settlement has suggested that an observed earlier onset of 

spawning (linked with higher bottom water temperatures) and reduced storm activity may 

have resulted in a mismatch with peak food availability and /or a favorable larval 

transport mechanism during the recent period of low settlement (de Lestang et al., 2015). 

 

 

4. The Agulhas Current and its tributaries 
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4.1 General physical attributes      

 

The Agulhas is a warm current with salinity between 35.0 and 35.5 that flows 

southwestward along the continental shelf/slope off the east coast of Africa from about 

Maputo (25S) to the tip of the Agulhas Bank (40S) where most of it retroflects sharply 

eastward back into the Indian Ocean (becoming the eastward-flowing Agulhas Return 

Current), while shedding eddies (“Agulhas Rings”) that propagate into the Atlantic 

(Lutjeharms, 2006a; Figure 20).   

 

The Agulhas Current plays an important role in surface return flow of the global 

thermohaline circulation with Agulhas Rings providing a vector for heat and volume 

transport between the Indian and Atlantic Oceans (Lutjeharms 2006a; Beal et al. 2011).  

The Agulhas is a very large current extending to > 1000 m depth with a transport of ~60-

85 Sv (Lutjeharms 2006a; Beal et al. 2015), which is at least comparable to the Gulf 

Stream and the Kuroshio Current.  The Agulhas is also similar to these currents in that it 

does not generate filaments or shed seaward propagating eddies as it flows along the 

continental shelf/slope.   

 

A significant fraction of the Agulhas Current is derived from warm, tropical surface 

waters in the southwestern Indian Ocean.  Its source waters from the north are from 

Mozambique Channel eddies and the East Madagascar Current, which coalesce off 

southern Mozambique (Figure 20; Lutjeharms, 2006a).  Although there are conflicting 

estimates, the most reliable results to date suggest that the mean volume transport of the 

Mozambique Channel throughflow is ~8-15 Sv, but this transport is highly variable over 

a large range of time scales (Ridderinkhof and de Ruiter, 2003).  The East Madagascar 

Current flows southward along the east coast of Madagascar (Figure 20) with a mean 

volume transport of ~20 Sv and it is also highly variable (Swallow et al., 1988; Roman 

and Lutjeharms, 2009).   In addition, the Agulhas Current is supplied from the east via 

recirculation in the southwest Indian Ocean sub-gyre which contributes another ~ 35 Sv 

(Stramma and Lutjeharms, 1997).   
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4.2 Local versus remote forcing and seasonality 

 

There is substantial interannual variability in the Mozambique Channel transport (~9 Sv) 

that appears to be remotely forced by the transport of the South Equatorial Current (SEC) 

that feeds the Mozambique Channel throughflow (Ridderinkhof et al., 2010).  In addition, 

model simulations suggest that the Mozambique Channel transport has strong seasonality 

with a maximum in August (Biastoch et al., 1999), which can be explained by variability 

in the wind field over the western part of the Indian Ocean (Ridderinkhof et al., 2010).  

At intraseasonal timescales most of the transport variability is driven by local forcing 

from eddies that migrate through the Mozambique Channel (Figure 20; Harlander et al., 

2009; van der Werf et al., 2010).  About four to seven eddies per year are known to 

transit through the Channel, from north to south (Ridderinkhof and de Ruiter, 2003). 

Variability in the East Madagascar Current transport is also forced by fluctuations in the 

transport of the SEC and southward propagating eddies (Nauw et al., 2008) with 

significant contributions also from local winds (Hermes et al., 2007).  In contrast, local 

winds seem to be the dominant forcing mechanism of variability in recirculation of the 

southwest Indian Ocean sub-gyre that supplies the Agulhas from the east (Hermes et al., 

2007). 

 

Given the variability in its sources, one would expect the Agulhas Current to have 

substantial transport variability over a similarly wide range of temporal scales.  

Multidecadal time series of geostrophic transport derived using a combination of SSH 

anomaly fields from satellite altimetry and climatological data suggest strong interannual 

variability in Agulhas transport that can be as large as a factor of two (see: 

http://www.aoml.noaa.gov/phod/altimetry/cvar/agu/transport.php).  Satellite remote 

sensing, modeling and observational studies indicate significant seasonal variability as 

well with the highest transport during the austral summer and lowest during the austral 

winter (Matano et al., 1998; Pearce and Grundlingh, 1982; Beal et al., 2015).  Most of the 

intraseasonal variability is derived from along-shore propagating eddies like break-away 

Durban eddies and Natal pulses (Bryden et al., 2005). Durban eddies are derived from 

persistent, cold-core, cyclonic, topographic lee eddies that form near Durban, South 

Africa and shed approximately every 14 days (Roberts et al., 2010).  Natal pulses are 
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large, solitary, along-shore propagating, cold-core meanders on the inshore side of the 

Agulhas Current (Lutjeharms and Roberts, 1988) that occur about six times per year 

(Lutjeharms et al., 2003). 

 

4.3 Upwelling and downwelling variability and mesoscale activity 

 

The generation and southward propagation of mesoscale eddies in the Mozambique 

Channel give rise to relatively high eddy kinetic energy (Figure 3).  These eddies have a 

profound and complex impact on upwelling and downwelling circulations in the channel 

(e.g., Roberts et al., 2014).  Coastal upwelling is also observed on the inshore side of the 

upwelling-favorable East Madagascar Current (Figure 20).  For example, a distinct, 

coastal upwelling cell is observed inshore of the southern limb of the East Madagascar 

Current where the current moves from a narrow continental shelf with a steep slope to a 

wider shelf with a less steep slope (Figure 20; DiMarco et al., 2000; Lutjeharms and 

Machu 2000; Machu et al., 2002). The lack of correlation between the local winds 

suggests that the upwelling is topographically controlled.  Eddy kinetic energy is 

distinctly elevated to the south and west of Madagascar (Figure 3) where the East 

Madagascar Current sheds eddies into the open ocean.  These eddies coalesce with 

Mozambique Channel eddies off the coast of Africa where they feed into the Agulhas 

Current.  

 

Like other western boundary currents, the Agulhas is upwelling favorable because the 

oceanic density field reacts to the presence of the current by adjusting to geostrophic 

equilibrium, which causes the thermocline and nutricline to tilt up toward the surface 

along the inshore side of the flow.  However, significant surface expressions of upwelling 

are largely controlled by local wind and topographic forcing (Lutjeharms, 2006a).  Shelf-

edge upwelling is observed primarily in association with specific headlands and 

topographic features along the coast (e.g., the St Lucia upwelling cell; Pearce et al., 1978; 

Lutjeharms et al., 2000; Meyer et al., 2002).  For example, north of Durban in the 

KwaZulu-Natal (KZN) Bight (Figure 20) the interaction of the Agulhas Current with the 

topography results in three areas and types of upwelling: topographically induced 

upwelling off St Lucia/Richards Bay in the north; shelf-edge upwelling; and cyclonic, 
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lee-trapped, eddy-induced upwelling to the south of Durban (Lutjeharms et al., 1989; 

Lutjeharms et al., 2000; Meyer et al., 2002; Lutjeharms, 2006a, 2006b).  Upwelling is 

enhanced southward of the KZN Bight (downstream; Figures 20, 21 and 22) where 

increased meandering of the current and interactions with topography combine with wind 

forcing to lift deep water up toward the surface and onto the widening shelf (Lutjeharms 

2006a). Upwelling is also observed off Algoa Bay and along the southeast coast to Port 

Alfred (Figure 21) (Beckley,1983; 1988; Beckley and van Ballegooyen, 1992; Goschen 

and Schumann, 1995; Goschen et al., 2012).   Upwelling in this region is most intense in 

the austral summer in response to upwelling-favorable prevailing winds from the 

northeast and it is revealed by marked temperature variability at the coastline (Figure 

21a; Beckley, 1983; 1988; Schumann 1999; Goschen et al. 2012; Jackson et al., 2012).  

Upwelling also occurs over the eastern Agulhas Bank (Figure 21a) where it is confined 

almost exclusively to prominent capes and headlands (Schumann et al., 1982; Goschen 

and Schumann, 1995).  Typically, cold water is upwelled along the shoreline within a few 

days after the wind changes to northeasterly and upwelling progresses north-eastwards 

along the coast with the movement of the wind and weather systems (Goschen et al., 

2012).  

 

4.4 Impacts on primary production 

 

In the Mozambique Channel phytoplankton abundance peaks in areas of nutrient 

enrichment that are often found in the core of cyclonic eddies, as well as on the 

continental shelf (Marsac et al., 2014).  However, counter to conventional wisdom, 

modeling studies in the Mozambique Channel indicate that cyclonic upwelling eddies 

sometimes have low concentrations of chlorophyll at their cores, and that anticyclonic 

downwelling eddies sometimes have high concentrations of chlorophyll at their cores 

(José et al., 2014).  These eddies also mediate lateral transport of nutrients and 

chlorophyll from the coasts of Africa and Madagascar (José et al., 2014; Lamont et al., 

2014; Roberts et al., 2014).  These results suggest that phytoplankton growth within both 

cyclonic and anticyclonic eddies in the Mozambique Channel often occurs in response to 

lateral nutrient injection into the euphotic zone by advection from the coastal zone rather 
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than upwelling and downwelling induced by the eddies themselves.  In contrast, 

topographically-forced coastal upwelling in the East Madagascar Current brings cold, 

nutrient-rich water to the surface, which stimulates primary production (Lutjeharms and 

Machu, 2000; Ho et al., 2004; Quartly and Srokosz, 2004). This upwelling and its 

impacts are enhanced in both the austral winter and in the austral summer (Ho et al., 

2004).   

 

The concentrations, distribution and movement of nutrients over the southeast African 

shelf can be strongly influenced by the Agulhas Current via topographically forced 

upwelling at specific locations (e.g., the St. Lucia upwelling cell in the KZN Bight; 

Meyer et al., 2002). In general, inorganic nutrient concentrations (nitrate, silicate and 

phosphate) off southeastern Africa decline in the surface waters from the inner shelf to 

the outer shelf and into the Agulhas current (Carter and d’Aubrey, 1988; Barlow et al., 

2015).  However, the interaction of upwelling, with horizontal advection and mixing can 

give rise to complex nutrient distribution patterns in the coastal zone (Meyer et al., 2002; 

Barlow et al. 2015).  Nutrient concentrations measured in the near-surface waters (10 m 

depth) over the shelf in the vicinity of the KZN Bight reveal enrichment of both 

phosphorus and silicate relative to nitrate compared to Redfield (Carter and d’Aubrey, 

1988; Meyer et al., 2002; Barlow et al., 2015) suggesting the potential for nitrate 

limitation.   

 

The Agulhas Current, itself, is warm and oligotrophic having been derived from nutrient 

poor surface waters from the southwestern tropical Indian Ocean (Lutjeharms, 2006a). In 

addition to driving upwelling through meandering and topographic interactions, it can 

dramatically suppress primary production when it impinges onto the shelf (Schumann et 

al., 2005).  Downwelling oligotrophic Agulhas Current rings can also suppress primary 

production when they are shed into the Atlantic giving rise to well-documented negative 

impacts on higher trophic level (fisheries) production (e.g., Duncombe Rae et al., 1992).  

 

In general, chlorophyll and primary production are enhanced along the inshore side of the 

Agulhas Current in the coastal zone of southeast Africa (Figure 20).  This enhancement is 
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associated with the aforementioned wind and topographically-induced upwelling during 

summer.  For example, recent measurements from the KZN Bight revealed chlorophyll 

concentrations that ranged from ~0.1 to 1.5 mgChla m
–3

 and integrated primary 

production that ranged from ~0.3 and 2.6 gC m
–2

 d
–1

 (Lamont and Barlow, 2015). 

Upwelling enhanced chlorophyll and primary production are also pronounced over the 

Agulhas Bank where surface chlorophyll-a concentrations can exceed 3 mgChla m
-3 

and 

carbon fixation rates are often greater than 0.5 gC m
-2  

d
-1

 (Figures 20, 21b and 22; 

Burchall, 1968; Carter and Schleyer, 1988; Boyd and Shillington, 1994; Lutjeharms et 

al., 1996a; Roberts, 2005; Jackson et al., 2012).  Some of the highest surface chlorophyll 

concentrations are observed over the Agulhas Bank near the coast between Cape Agulhas 

and Algoa Bay (Figures 20, 21b, and 22; Probyn, 1994; Demarcq et al., 2003), between 

Algoa Bay and Port Alfred (Barlow et al., 2010; O'Donoghue et al., 2010) and in the 

KZN Bight north of Durban (Lamont and Barlow, 2015).  Coastal diatom species are the 

primary contributor to the elevated phytoplankton biomass and primary production 

observed in these upwelling centers (Carter and Schleyer, 1988; Lamont and Barlow, 

2015), with Prochlorococcus and Synechococcus dominant in the offshore regions 

(Barlow et al., 2015).  A subsurface chlorophyll maximum is also observed to form over 

the shelf in the KZN Bight (Barlow et al., 2015) and in the central Agulhas Bank (Figure 

22) when nutrient concentrations near the surface become limiting (Shannon et al., 1984; 

Probyn et al., 1995).  

 

4.5 Higher trophic levels impacts and speculation 

 

The Mozambique Channel mesoscale eddies (Figure 20) play a key role in marine 

ecosystem dynamics and higher trophic level behavior (Marsac et al. 2014).  These 

eddies strongly influence zooplankton and micronekton abundance and also upper trophic 

levels.  For example, Huggett (2014) showed that zooplankton biomass is highest in 

upwelling cyclonic eddies, intermediate in fronts and divergence zones, and lowest in 

anticyclones, and Béhagle et al. (2014) showed that acoustic-derived micronekton 

densities mirror these zooplankton patterns.  Similarly, the average density of foraging 

seabirds tends to be lowest in downwelling anticyclones, highest in upwelling cyclones 

and at intermediate levels in divergence, shelf and frontal zones (see Marsac et al., 2014 
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and references cited therein). Complex higher trophic level behavioral responses are also 

observed in the Channel’s highly variable environment. For example, swordfish tend to 

be associated with divergence zones and fronts (Potier et al., 2014).  Similarly, the 

foraging patterns of Great Frigatebirds (Fregata minor) are closely tied to the boundaries 

of mesoscale eddies in the Mozambique Channel where good foraging conditions are 

promoted by lateral nutrient injections that enhance primary production and/or through 

accumulation or aggregation of biomass at fronts (Emilie and Marsac, 2010).   

 

In contrast, relatively little is known about higher trophic level responses to variability in 

the East Madagascar Current (Lutjeharms, 2006b).  The abundances of both pelagic and 

demersal fishes have been reported to increase toward the south in the East Madagascar 

Current (Lutjeharms, 2006b); whether or not this is related to the aforementioned 

upwelling that is observed inshore of the southern limb of the Current is unknown.   

 

Interannual changes in the number, intensity and/or transport of eddies in the 

Mozambique Channel in response to large-scale remote forcing by the South Equatorial 

Current could potentially have profound effects on top predators like the Great 

Frigatebirds (Emilie and Marsac, 2010).  Since the transport of the East Madagascar 

Current is also influenced by variability in South Equatorial Current forcing, we 

speculate that there are similar higher trophic level impacts, especially if this variability 

alters the timing of upwelling events or its intensity in the coastal waters of Madagascar.  

This could have significant impacts on the recruitment success of both pelagic and 

demersal fishes (Cushing, 1990).   

 

The biogeographical distributions of zooplankton species off South Africa clearly reflect 

the influence of the Agulhas Current, with specific assemblages associated with Agulhas 

water (De Decker, 1984; Schleyer, 1985). It has also been shown that the Agulhas 

Current transports Indo-Pacific zooplankton species into waters over the Agulhas Bank 

(De Decker, 1973). Studies on zooplankton variability associated with the Agulhas 

Current have shown that biomass is greater inshore of the Current compared to within the 

Current itself, but with the Current harboring a higher diversity of species (Carter and 
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Schleyer, 1988; Pretorius et al., 2016).  All of these observations are consistent with the 

fact that the Agulhas Current is oligotrophic and derived from the tropical southwestern 

Indian Ocean (Lutjeharms, 2006a). 

 

The impact of the Agulhas Current on fish larvae is essentially similar to that observed 

for zooplankton.  Spatial and temporal studies on fish larvae along the eastern seaboard 

of South Africa have revealed the importance of inshore upwelling on clupeiform larvae 

(Beckley and Hewitson, 1994), the influence of Agulhas Current intrusions in shoreward 

transport of mesopelagic myctophid larvae (Olivar and Beckley, 1994; Olivar et al., 

1998; Harris et al., 2001) and the influence of the Agulhas Current on southward 

dispersal of larvae of tuna and other species from lower latitudes (Beckley and Connell 

1996; Beckley 1998; Beckley and Leis 2000).  

 

Off southeastern Africa, the KZN sardine run occurs in the austral winter when sardines 

(Sardinops sagax) of a distinct subpopulation move northward along the east coast of 

South Africa (Roberts et al., 2010; O'Donoghue et al., 2010a).  Their dense shoals create 

a feeding frenzy along the coastline with dramatic higher trophic level responses (sharks, 

birds, dolphins, whales and people; O'Donoghue et al. 2010b).  The existence and 

strength of the annual sardine run has long been a conundrum; the sardines’ migration 

along the narrow shelf against the powerful, warm Agulhas Current is a particular enigma 

given that they are typically considered a cool, temperate species  (Figures 20 and 23).   

 

The persistence of cool, subsurface water on the eastern Agulhas Bank extending north 

along the Transkei coast has been demonstrated in the austral autumn (Beckley and van 

Ballegooyen, 1992; Roberts et al., 2010).  Under the influence of southwesterly winds, 

northward-flowing coastal counter-currents exist at times between the Agulhas Bank and 

the KZN Bight. These currents provide a corridor for migration that can also be enhanced 

by transient cyclonic eddies that move downstream in the shoreward boundary of the 

Agulhas Current (Figures 23 and 24), i.e., break-away Durban eddies and the Natal 

pulses (Roberts et al., 2010).  These eddies arrive at a frequency of 1-2 per month and 

their influence can last up to six days; thus, they potentially provide enhanced windows 
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for northward migration.  Roberts et al. (2010) speculate that this is particularly important 

at prominent coastal headlands and where the shelf is narrowest.  At these locations the 

pervasive influence of the Agulhas Current likely thwarts northward migration until 

assistance arrives with the passage of a transient cyclonic eddy allowing northward 

passage of the sardines and their associated megafauna predators.  

 

The Agulhas Bank (Figure 25) is a productive region that supports several commercial 

fisheries that are economically important for South Africa. It is a major spawning ground 

for anchovy (Engraulis encrasicolus), sardine (Sardinops sagax), squid (Loligo 

reynaudii), hake (Merluccius capensis), kingklip (Genypterus capensis), sole 

(Austroglossus pectoralis), and yellow tail (Seriola lalandi) (Hutchings, 1994; Hutchings 

et al., 2002). The central-eastern Agulhas Bank also provides a nursery for several of 

these species in areas where topographically-forced recirculations promote retention and 

recruitment (Hutchings et al., 2002; Figure 25).  The high fish productivity is supported 

by the wind and topographically-induced upwelling and enhanced plankton productivity 

over the Agulhas Bank.  

 

Due to the strong influence of the Agulhas Current, most neritic fish species in southeast 

Africa coastal waters have evolved highly selective reproductive patterns for successful 

retention of planktonic eggs and larvae (Hutchings et al., 2002).  Several appear to 

undergo northward spawning migrations, but entrainment of early life history stages into 

the powerful Agulhas Current is surely a non-advantageous mechanism for dispersal 

away from the known estuarine and coastal nursery areas (Figure 20; Figure 25). As 

discussed above, topographic influences of headlands and embayments along the 

relatively linear coastline of southeast Africa are important, not only for enhancing 

primary production and food supply, but also for providing retention areas for the larvae 

of coastal fish species.  However, there are not many of these embayments. The KZN 

Bight, north of Durban, represents a significant area with a cyclonic circulation pattern 

that should favor retention of larvae in these warm sub-tropical waters. Another riskier 

reproductive strategy would be to avoid the core of the Agulhas Current by spawning in 

summer on the narrow shelf off the east coast and rely on southward transport induced by 
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the upwelling-favorable north-easterly winds which are more prevalent at that time. This 

would allow slower transport but retain the developing larvae in coastal waters from 

where they can easily access nursery areas but always with the possible threat of being 

entrained into the fast-flowing Agulhas Current. 

 

5. The recent paleoceanographic history of the Indian Ocean and current trends  

 

It is important to remember that the present day boundary currents of the Indian Ocean 

discussed herein have changed over recent geological time as a result of changes in 

climate and sea level.  Paleo-climate records show that global sea level was 4 to 6 m 

higher during the last interglacial period, about 125 kyr before present, and it 

subsequently dropped by 80 to 150 m over the next 90 kyr to its lowest point between 30 

and 15 kyr during the last glacial maximum (Waelbroeck et al., 2002).  Proxy records for 

ocean temperature indicate a concomitant cooling of tropical sea surface temperatures 

over this 90 kyr BP period of 2°C and 3°C.  Over the past 15 kyr these trends have 

completely reversed bringing us into the present day interglacial state.  These global 

fluctuations in climate, sea level and sea surface temperature are clearly manifested in 

paleoceanographic records from the Indian Ocean and there is evidence, in at least some 

cases, that they had significant impacts on boundary current circulations and also 

biogeochemical and ecological responses. 

 

In the northern Indian Ocean paleoceanographic records suggest that during glacial 

periods the SWM was weaker and the NEM was stronger compared to the present (Saher 

et al., 2007).  Specifically, fossil records from the western Arabian Sea have identified a 

glacial monsoon mode between 20 and 13 kyr BP characterized by a weak SWM and 

stronger cooling by glacial NEM winds compared to the modern situation, as well as a 

modern monsoon mode, which started at ~8 kyr BP with a shift toward a strong SWM 

associated with strong upwelling, and weak influence of the NEM on SST.   

 

Based upon our current understanding, we can speculate with some confidence that 

weaker SWM winds during glacial periods would give rise to less energetic boundary 

currents, weaker upwelling and suppressed biogeochemical and ecological responses in 
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both the Arabian Sea and the Bay of Bengal. It is somewhat more difficult to project how 

stronger cooling by NEM winds during glacial periods would impact biological processes 

in the northern Indian Ocean.  Intensified wintertime convection over the Arabian Sea 

during the NEM would likely give rise to deeper mixing and greater nutrient enrichment 

of surface waters. However, with this deeper mixing, the signature winter phytoplankton 

bloom that is observed to occur in the northern Arabian Sea (e.g., Banse and McClain, 

1986) could be reduced or eliminated completely due to increased light limitation 

(Wiggert et al., 2002; Wiggert et al., 2000).  These kinds of effects would undoubtedly be 

less pronounced in the Bay of Bengal where there is much stronger stratification.  

Retrospective analysis of satellite chlorophyll and temperature data has suggested that the 

SWM is still intensifying, perhaps in response to climate change that has reduced 

Himalayan snow cover, and that this has led to further increases in upwelling and 

productivity in the western Arabian Sea during the SWM (Goes et al., 2005).  However, 

more recent analysis of the satellite-based surface temperature and chlorophyll records 

(Prakash and Ramesh, 2007; Prakash et al., 2012; Rixen et al., 2013; Roxy et al., 2016) 

indicates that decadal variability may have influenced the earlier interpretation of a 

climate change-associated increase in SWM production (Rixen et al., 2013).  Indeed, 

Prakash et al. (2012) argue that the earlier observed biological changes in the western 

Arabian Sea (Goes et al., 2005) are an artifact of the change in local winds and ocean 

dynamics that are part of the natural long-term variability. 

 

In the eastern Indian Ocean, paleoceanographic data suggest that the transport of the ITF 

was reduced and the Leeuwin Current was “less active” during glacial periods (see 

Wyrwoll et al., 2009 and references cited therein).  Specifically, fossil records from the 

western margin of Australia indicate that during the last glacial maximum (~21 kyr BP 

when sea level was ~130 m lower than today and there were much wider shelves along 

the coast of Western Australia and in the Indonesian Seas) the ITF transport was reduced, 

there were lower, low-latitude SSTs, and there were changes in the Western Pacific 

Warm Pool.  These changes likely reduced the transport of the Leeuwin Current 

compared to the present day.  Modern studies of the impact of changes in the intensity of 

the Leeuwin Current on primary productivity suggest that a less active Leeuwin Current 
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during glacial periods would have allowed increased upwelling during the austral 

summer months along the western margin of Australia with associated increases in 

nutrient supply, primary production and higher trophic level responses (Hanson et al., 

2005a; Hanson et al., 2005b; Twomey et al., 2007).  It is difficult to speculate on how 

these changes in transport may have impacted productivity during the austral winter 

months when both the Leeuwin Current transport and cooling winds and entrainment 

control nutrient supply (Koslow et al., 2008).  

 

Reductions in Leeuwin Current transport can also have direct impacts on larval transport 

of higher trophic level species, which can lead to either reduced or enhanced recruitment 

depending upon the life history strategy of the species.  For example, based on present 

day observations we might expect that a general decline in Leeuwin Current transport in 

the past would be associated with a decline in Western rock lobster (Panulirus cygnus) 

recruitment (Figure 19; Caputi et al., 2001).  However, changes in eddy generation and 

the coastal circulation associated with lower sea level and/or reduced Leeuwin Current 

transport could easily override this relationship.  We speculate in section 3.6 that the 

breakdown in the correlation between transport and settlement that has been observed in 

recent years could be related to subtle changes in the circulation or the timing of the 

spawning period of the lobsters.   

 

In contrast to the northern Indian Ocean boundary currents and the Leeuwin Current, 

paleoceanographic data do not provide any conclusive evidence of major shifts in the 

Agulhas Current position, or of substantial cooling in the current’s water during previous 

glacial maxima (Lutjeharms, 2006a).  Indeed, it is believed that the position of the 

Agulhas Current has been fairly stable for >150 kyr and, that over this time period, it has 

also retroflected in approximately the same location as today (Winter and Martin, 1990).  

This does not, however, necessarily imply that the transport has remained unchanged.  

The fossil record on the eastern side of the Agulhas Bank shows that there was 

substantial glacial-interglacial variability in this region with the influence of Agulhas 

Current water reduced during glacial periods when the presence of sub-Antarctic water 

was increased (Rau et al., 2002).  This change is consistent with inferred changes in ITF 
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transport, which was also reduced during glacial periods (Wyrwoll et al., 2009).  This 

glacial-interglacial variability in Agulhas Current influence on the Agulhas Bank is also 

associated with unexplained changes in biological productivity that have been deduced 

from the fossil record (Winter and Martin, 1990).  It has been suggested that past 

increases in production may have been related to increased meandering of the current 

(Lutjeharms and de Ruiter, 1996), which gave rise to increased upwelling of nutrient-rich 

water and greater primary productivity (Lutjeharms, 2006a).  We can anticipate, based on 

our present understanding, that any changes in the transport of the Agulhas Current or 

productivity and/or meandering of the Current on the Agulhas Bank would have 

potentially profound impacts on higher trophic level production and recruitment.  We can 

also expect that such changes would drive evolution of the reproductive patterns of most 

neritic fish species in southeast Africa coastal waters (Hutchings et al., 2002). 

 

6.  Summary and Conclusions 

 

Due to the distinctive geography of the Indian Ocean basin, its boundary currents are 

complex and unique in many respects.  These currents provide interesting contrasts in 

terms of upwelling, downwelling and mesoscale variability, relative influences of local 

versus remote forcing and biogeochemical and ecological responses. Specific examples 

from each current system have been presented to illustrate the impacts these currents 

have on higher trophic levels, which cover a wide range of size and trophic level and 

include copepods, decapods and fishes.   

 

The northern basin is dominated by seasonally reversing currents that are driven by the 

monsoon winds.  However, remote influences from planetary waves that originate in the 

equatorial waveguide can have significant impacts on the strength and direction of these 

currents and also on upwelling intensity.  The seasonal reversals in these currents have 

very significant biogeochemical and ecological impacts that include seasonal switching 

from upwelling to downwelling circulations, and modification of primary productivity, 

nutrient stoichiometry, oxygen concentrations and phytoplankton species composition.  

There is also clear evidence that these seasonally reversing currents have profound effects 
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on higher trophic level species behavior and productivity.  These effects are observed in 

in the behavior of crustacean zooplankton and large pelagic fish species in the western 

Arabian Sea, and in zooplankton community composition or behavior on the East Indian 

Shelf and off the coast of Java.  The impacts of these seasonal current reversals and 

changes in upwelling and downwelling circulations are also manifested in West Indian 

coastal waters, where they influence oxygen concentrations and have been implicated in 

massive fish kills; in the Laccadive Sea where the standing stock of zooplankton changes 

by more than a factor of two; in the coastal waters of Sri Lanka where they impact 

chlorophyll concentration and catch per unit effort of fishes; and in the Bali Strait, where 

they strongly influence both seasonal and interannual variability in sardine catch.  

 

In the southern basin, the Leeuwin Current is unusual in almost every respect due, in 

large part, to remote forcing that derives from the Indonesian Throughflow which sets up 

the large-scale pressure gradient that drives this southward flow.  The Leeuwin Current 

does not reverse seasonally, but it does exhibit significant seasonal and interannual 

variability.  The Leeuwin is an oligotrophic downwelling-favorable current but local 

wind forcing is also important as it can drive intermittent near shore current reversals and 

transient upwelling. This transient upwelling can give rise episodically high levels of 

primary production in isolated coastal regions.  Although its transport is relatively small, 

the Leeuwin Current has the largest eddy kinetic energy among all mid-latitude eastern 

boundary current systems and this induces strong cross-shelf transport.  As a result, the 

Leeuwin Current sheds anomalous, relatively productive, westward-propagating, warm-

core eddies, the influence and fate of which are still being explored.  The Leeuwin 

Current has long been linked with the distribution and transport of biota along the west 

coast of Australia and it plays a crucial role in controlling larval retention and dispersal of 

many coastal species.  We speculate that successful settlement of rock lobster larvae may 

be related to relatively subtle aspects of the Leeuwin Current transport and flow.  

 

In contrast, the southward-flowing Agulhas Current is among the largest boundary 

currents in the world. Its northern source waters derive from Mozambique Channel 

eddies and the East Madagascar Current.  In addition, the Agulhas is supplied from the 
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west via recirculation in the southwest Indian Ocean sub-gyre.  Mesoscale eddies have a 

profound and complex impact on upwelling and downwelling circulations in the 

Mozambique Channel and therefore also on nutrients, plankton productivity and higher 

trophic level behavior.  Coastal upwelling and productivity response is observed on the 

landward side of the upwelling-favorable East Madagascar Current, but relatively little is 

known about higher trophic level responses to variability in this Current.  We speculate 

that interannual changes in large-scale remote forcing by the South Equatorial Current 

could potentially have profound effects on top predators in the Mozambique Channel and 

the East Madagascar Current. 

 

There is significant seasonal and interannual variability in Agulhas transport that is 

remotely forced by variability in its sources.  In contrast, most of the intraseasonal 

variability in the current is due to local forcing, derived from along-shore propagating 

eddies like break-away Durban eddies and Natal pulses. The Agulhas Current is 

upwelling favorable but significant surface expressions of upwelling are largely 

controlled by local seasonal winds and topographic forcing. As a result, primary 

production is enhanced along the inshore side of the Agulhas Current at specific locations 

in the coastal waters of southeast Africa during the austral summer.  The Agulhas 

Current, itself, is warm and oligotrophic having been derived from nutrient poor surface 

waters from the southwestern tropical Indian Ocean. In contrast, the Agulhas Bank and 

the KZN Bight are productive regions that support several commercial fisheries that are 

economically important for South Africa, including the sardine (Sardinops sagax).  This 

species is responsible for the KZN sardine run off southeastern Africa, which is 

facilitated by coastal counter-currents and transient cyclonic eddies that provide a 

corridor for the northward sardine migration against the powerful Agulhas Current. Due 

to the strong influence of the Agulhas Current, many neritic fish species in southeast 

Africa coastal waters have evolved highly selective reproductive patterns for successful 

retention of planktonic eggs and larvae.  Topographic influences of headlands and 

embayments in the relatively linear coastline of southeast Africa are important, not only 

for enhancing primary production and food supply, but also for providing retention areas 

for the larvae of coastal fish species.   
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It should be kept in mind, however, that the characteristics of all of these current systems 

have not been static over geological time. There is evidence in the paleoceanographic 

record that the boundary currents in the Indian Ocean have been influenced by global 

fluctuations in climate, sea level and sea surface temperature, and that glacial-interglacial 

changes in these currents had significant impacts on biological productivity and most 

likely also higher trophic levels.     
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Table 1: Summary of the major Indian Ocean boundary currents in terms of: relative temperature, salinity, seasonality, transport, depth, nutrient concentrations, chlorophyll concentrations, 
production rates and P/B ratios, and amount of mesoscale variability, based upon the discussion and references cited in this paper. *BTL = Below Detection Limit.  BTL is assumed for Agulhas 
Current. **KZNB = KwaZulu-Natal Bight. 
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/ 
5 Sv (NEM) 

~500 (SWM)  
/150 (NEM) 

>15 μM NO3 at the 
surface,  
Potential Fe and Si 
limitation 
(SWM/OMAN) 

>40 mgChla/m2   
>2.5 gCm-2d-1 

(SWM/OMAN) 
P/B ~ 62 

Very High during 
SWM off of Somalia 

WICC Weak 
temperature 
signatures 
Warm (SWM) 
/Warm (NEM) 
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/Fresh (NEM) 
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Reversing 
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low O2 waters 
(SWM over shelf), 
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(12-13°N SWM)  
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High in Mozambique 
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Madagascar.  High 
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Figure 1: Schematic representation of 
currents during the NEM (top) and SWM 
(bottom). The currents indicated are the 
South Equatorial Current (SEC), South 
Equatorial Countercurrent (SECC), 
Northeast and Southeast Madagascar 
Current (NEMC and SEMC), East African 
Coastal Current (EACC), Somali Current (SC), 
Southern Gyre (SG) and Great Whirl (GW) 
and associated upwelling wedges (green 
shades), Southwest and Northeast 
Monsoon Currents (SMC and NMC), South 
Java Current (SJC), East Gyral Current (EGC), 
Leeuwin Current (LC) and Agulhas Current. 
The subsurface return flow of the supergyre 
is shown in magenta. Depth contours 
shown are for 1000 m and 3000 m (grey). 
The red vectors (Me) show directions of 
meridional Ekman transports. ITF indicates 
Indonesian Throughflow. Dashed arrows 
indicate uncertain flows. Figure and caption 
modified from Schott et al. (2009) following 
Beal et al. (2013).  
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Figure 2: Climatology of SeaWiFS near-surface Chlorophyll focusing on the Indian Ocean 
and showing also land vegetation in surrounding continents.  Note that the averaging 
over time in the ocean tends to obscure mesoscale variability.  Image from 
http://oceancolor.gsfc.nasa.gov  



  

Figure 3: Top panels: Surface wind speed and direction over the Indian Ocean with sea surface 
temperature during the NEM (left) and the SWM (right) modified  from Schott and McCreary (2001). 
Wind speed units are m/sec and the warmer colors represent warmer temperatures.  Bottom panels: 
Surface ocean eddy kinetic energy during the Northeast Monsoon (left) and the Southwest Monsoon 
(right) derived from AVISO sea surface height data.   



  

Figure 4: Sea surface salinity form Aquarius (1/4 degree resolution, August 2012).  Data 
obtained from the JPL PO-DAAC (http://podaac.jpl.nasa.gov/). Note that the fresh areas 
around Mauritius and the Maldives are likely artifacts. 
 



  

Figure 5: Monthly climatology of MODIS-Aqua (4 km resolution) chlorophyll: A) January, 
B) April, C) August, D) October. The climatology fields were obtained from the Goddard 
DAAC (http://daac.gsfc.nasa.gov).  
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Figure 6: Monthly climatology of net primary production (mgC m-2 d-1) estimated from 
SeaWiFs data: A) January, B) April, C) August, D) October. The climatology fields were 
obtained from the Goddard DAAC (http://daac.gsfc.nasa.gov).  
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Figure 7: Near-surface chlorophyll-a concentration (mg/m3) in the Arabian Sea and the Gulf of 
Oman showing intense mesoscale variability at the end of the Southwest Monsoon (October 
6, 2004).  From http://oceancolor.gsfc.nasa.gov. 
 

Chlorophyll	Concentra on	(mg/m3)	

0.05				0.1														0.3																	1																		3																	10															30				50	



  

Figure 8: Model-simulated seasonal evolution of most limiting surface nutrient for net 
plankton with blue (red) indicating Fe (N) limited growth (i.e., red is iron replete). The four 
seasons consist of (A) January (NEM); (B) April (Spring Intermonsoon); (C) August (SWM); 
and (D) October (Fall Intermonsoon).  Figure and caption modified from Wiggert et al. 2006. 



  

Figure 9: Zone of severe hypoxia on the western Indian shelf during September-October 
1999 and locations of sampling sites. Zone of hypoxia is shown as shaded region (O2 < 0.5 ml 
l-1). Figure and caption modified from Naqvi et al. (2000). 
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Figure 10:  A) Map of the Indo-Pacific region and Indonesian Throughflow pathways. Most of the Throughflow (red line) passes through the 
Makassar Strait. The South China Sea Throughflow is shown in green. The Throughflow via the eastern part of Indonesia/Maluku Sea is 
shown in blue. All these ITF inputs are mixed in the Banda Sea before exiting into the Indian Ocean, mostly via Timor passage and Ombai 
Strait (orange).  Figure and legend modified from Susanto and Song (2015). B) Subregion showing cold water upwelling along the coast of 
Java during the Southeast Monsoon simulated with the Ocean Forecasting Australia Model (OFAM).  Cold water is indicated by the cool 
colors (green to blue) and warm water is indicated by the warm colors (yellow to orange). Figure courtesy of A. Schiller. 
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Figure 11: 8-day composite chlorophyll-a images for the western Bay of Bengal from MODIS 
Aqua. Left panel: 5-12 March 2006; Right panel: 17-24 January 2006. The fields were 
obtained from the Goddard DAAC (http://daac.gsfc.nasa.gov). 
 



  

Figure 12: Surface temperature in degrees C (left panel) and chlorophyll concentration 
in mg m-3 (right panel) obtained on 1 August 2012. From de Vos et al. (2014). 



  

Figure 13: MODIS-derived monthly chlorophyll-a (mg m-2) climatologies for the eastern 
equatorial Indian Ocean in the vicinity of Java and Sumatra: chlorophyll: A) June, B)July, C) 
August, D) September, E) October, F) November. The climatology fields were obtained from 
the Goddard DAAC (http://daac.gsfc.nasa.gov).  
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Figure 14: Nitrate (left panel) and phosphate (right panel) sections from WOCE line IR06, 
extending from northwest Australia (station 2) to Lombok Strait (station 19). 
 



  

Figure 15:  Schematic diagrams of the upper ocean circulation of the southeast 
Indian Ocean near Australia associated with the source regions of the Leeuwin 
Current. Figure and caption modified from Domingues et al. 2007. 
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Figure 16: Single-day sea surface temperature (left pane) from GHRSST (1 km resolution) 
and surface chlorophyll a distribution (right panel) from the MODIS-Aqua satellite (1 km 
resolution) off Western Australia on 5 June 2007. Alpha (α) highlights a warm core, high 
chlorophyll feature. Figure and caption modified from Weller et al. (2011).   
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Figure 17: Typical structure of forming Leeuwin Current 
eddies. Top left panel: Sea surface height anomaly and 
surface geostrophic current anomaly (arrows) in the 
southeast Indian Ocean on 28 May 2003. Top right panel: 
Sea surface temperature.  Bottom right panel: Sea 
Surface chlorophyll concentration from MODIS in the 
same region on 25 May 2003. Note the formation of a 
Warm Core–Cold Core–Warm Core eddy triplet labeled A, 
C, B, respectively, in the top and middle panels. Figure 
and caption modified from Feng et al. (2007) as 
reproduced in Waite et al. 2007a. 



  

Figure 18: Top Panel: Chlorophyll a 
biomass integrated to 150 m as 
estimated from calibrated fluorescence 
as seen in Middle Panel.  Middle Panel: 
A composite of four SeaSoar transects 
showing regional scale variation of 
subsurface fluorescence within the 
cold-core (CC) and warm-core (WC) 
eddies separated by the warm surface 
jet (WSJ) generated between the eddies 
(solid arrow). East of the WC eddy is 
Subtropical Front Water (SFW), a mild 
CC feature typified by an intense 
fluorescence maximum at depth. White 
lines are isopycnals. Note that the more 
diffuse layer of chlorophyll a in the WC 
eddy in general contains more vertically 
integrated chlorophyll a biomass than 
any other regional feature. Bottom 
Panel: SeaWIFS sea-surface 
temperature image showing the 
location of the CC, WC, WSJ and SFW 
and the actual ship track for the 
SeaSoar transects (solid black lines). 
Figure and caption modified from Waite 
et al. 2007c. 
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Figure 19:  Puerulus settlement (numbers per collector) from 1968 through 2009 at four 
collector sites off of Western Australia in the western rock lobster fishery. High rock lobster 
puerulus settlement is associated with strong Leeuwin Current transport in La Niňa years 
with a three to four year lag. Figure and caption modified from Caputi et al. (2014). 
 



  

Figure 20: Right Panel: Source waters, eddies and retroflection in the Agulhas Current. From 
Lutjeharms (2006). Left Panel: MODIS February chlorophyll concentration climatology 
around South Africa and Madagascar and in the vicinity of the Agulhas Current and 
retroflection. The climatology fields were obtained from the Goddard DAAC 
(http://daac.gsfc.nasa.gov).  
 
 



  

Figure 21:  Panel (a) shows the sea surface 
temperature (degrees C) on September 2, 
2010 from the blended microwave and 
infrared optimally interpolated product 
(http://www.remss.com/sst). The grey 
lines indicate the bathymetry in 1000 m 
intervals starting at 1000 m. The black 
lines indicate the absolute dynamical 
height (ssh anomaly from Aviso, plus the 
mean of Maximenko and Niiler) that 
ranges from 0.5 to 0.8 m. Transects are 
numbered east to west from 1 to15.The 
cruise track commenced on thee astern 
Agulhas Bank on August 30, 2010 and 
finished on the western Agulhas Bank on 
September 22, 2010. Note the Natal Pulse 
(NP) in the Agulhas Current near sections 
1–3 and the Agulhas Current meander 
(ACM) at sections 4–6. Panel (b) shows a 
3-day composite from MODIS aqua of 
chlorophyll (mg/m3)  measured from 1 to 
3 September 2010. The spatial resolution 
of the chlorophyll a data is 4 km.  To 
emphasize spatial variability, chlorophyll  
concentrations are presented in 
logarithmic values (base10). Figure and 
caption are  modified from Jackson et al. 
(2012). 
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Figure 22: Vertical sections of chlorophyll (mg/m3) across (a) section 4, (b) section 5, and 
(c)section 6 in Figure 21.  Chlorophyll is colored and conservative temperature is shown as 
contour line. Black triangles indicate the station position.  Figure and caption modified from 
Jackson et al. (2012). 
 



  

Figure 23: S–ADCP data collected in 
May 2005 between Port Edward and 
East London: (a) near-surface current 
field measured along interconnected 
trans-shelf transects A–A', B–B', C–C', 
and D–D', and a complementary SST 
satellite image recorded on 7 May 
2005. Note the close proximity of the 
Agulhas Current (red) on the KZN 
south coast and between Mbhashe 
and Kei rivers in both datasets, and 
the counterflow on the shelf near Port 
St Johns distinguished in the satellite 
image by cooler coastal water (green); 
(b) vertical section to a depth of 600 m 
of the S–ADCP data collected along 
transect A–A', highlighting the close 
proximity of the core of the Agulhas 
Current (yellow-orange) to the shelf 
edge; and (c) vertical section of the S–
ADCP data collected along transect D–
D', highlighting core velocities of the 
Agulhas Current (yellow-orange) over 
the shelf edge. Figure and caption 
modified from Roberts et al. (2010). 

 



  

Figure 24: (a) Expanded view of the 
near-surface circulation measured by 
S–ADCP near Port St Johns, 
highlighting distinct onshore flow in 
the vicinity of Rame Head and to the 
east, north-eastward flow. Combined 
with the offshore flow on the inner 
shelf of the Waterfall Bluff transect, 
these data indicate a lee-trapped 
cyclonic eddy between Rame Head 
and Waterfall Bluff. Red dots 1–6 
indicate CTD stations; (b) vertical 
sections (velocity and direction) of 
the S–ADCP data collected along 
transect C–C' to a depth of 600 m 
depicting the high-velocity core of 
the south-westward-flowing Agulhas 
Current (yellow-red) and a 10 km-
wide distinct north-eastward 
counterflow (blue). Note the 
subsurface velocity maximum (>100 
cm s–1) over the shelf slope.  Figure 
and caption modified from Roberts et 
al. (2010). 
 



  

Figure 25:  The central-eastern Agulhas Bank nursery/spawning ground showing the spawning areas of several different species along with 
key zones of Agulhas Current influence.  The latter include, from east to west, a region where the Agulhas diverges from the coastline 
between 27o and 28o E with occasional large offshore excursions of Agulhas Current and shelf water; A zone of major variability between 
25.5o and 26.5o E which includes a region where onshore intrusions of Agulhas water often occur; A region between 23.5o and 25o E where 
eddies impinge on the shelf; A zone of shelf-edge upwelling between 22o and 24o E; and finally the region between 20o and 22o E were 
losses of larvae to the SW Indian Ocean and transport to the Western Bank likely occur. Figure and caption modified from Hutchings et al. 
(2002). 
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Highlights 

 

Indian Ocean boundary currents are complicated compared to the Atlantic and Pacific. 

 

All of the boundary currents in the northern Indian Ocean reverse seasonally in response 

to monsoon forcing.  These include the Somali Current (East Africa Coastal Current) the 

Oman Coastal Current, the West India Coastal Current, the Southwest Monsoon Current, 

the East India Coastal Current, the Northeast Monsoon Current and the Java Current. 

 

All of these reversing currents have large biogeochemical and ecological impacts.  

 

The Leeuwin Current flows poleward and has very high eddy kinetic energy. 

 

It sheds seaward-propagating, warm-core eddies that impact higher trophic levels. 

 

The Agulhas Current is very large and generates eddies that propagate alongshore.  

 

As a result, neritic species have evolved highly selective reproductive behaviors. 
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