396 research outputs found

    Effects of River Inputs into the Bay of Bengal

    Get PDF
    The effect of river runoff in the Bay of Bengal is examined using a reduced gravity primitive equation ocean model coupled to an atmospheric boundary layer model. Model simulations are carried out by including river discharges as surface freshwater forcing at the mouths of the rivers. To assess the effect of river inputs on the dynamics and thermodynamics of the tropical Indian Ocean, parallel simulations are carried out by neglecting the river inputs. Additionally, another set of parallel runs without penetrative radiation loss through the mixed layer is carried out. The freshwater flux due to rivers results in lower salinities and shallower mixed layers, as expected. However, the influence of this additional freshwater flux into the bay is rather counterintuitive. With the inclusion of river discharges more heat is absorbed by the ocean, but sea surface temperatures are slightly cooler in the bay because of enhanced entrainment cooling of the shallower mixed layer, enhanced penetrative radiation, and an enhanced effect of latent heat loss on the temperature tendency. This is despite the greater latent heat loss when river input is neglected. Conversley, neglect of penetrative radiation results in a shallower but slightly warmer mixed layer with river input. River input and penetrative radiation each affect the mixed layer depths, the salinity and temperature structure, and currents in the Bay of Bengal, but they have a small effect on SST. Annual SST, averaged over the Bay of Bengal, is only 0.1 degreesC colder with river input. Neglecting penetrative radiation in the river run results in an increase of only 0.2 degreesC for the annual SST. The lack of persistence of a barrier layer in the bay helps regulate SST even in the presence of enhanced buoyancy forcing due to river input. Averaged over the bay, a barrier layer forms as mixed layer detrainment occurs, and the thermocline deepens just after the southwest monsoon and the northeast monsoon. The barrier layer is short-lived in each case it is eroded by mixing. The effect of riverine input in the bay is not confined to the surface waters. A pool of cold anomaly (-1 degreesC) and fresher waters is centered near 100 m depth in the bay with riverine input. This cold pool beneath the mixed layer allows entrainment cooling of the mixed layer to be more effective, even though mass entrainment is lower relative to the case neglecting river input. The more diffuse thermocline in the bay is consistent with enhanced vertical mixing despite the large positive buoyancy forcing

    A critical analysis to untangle the Deepana and Paachana Karma

    Get PDF
    Introduction: Deepana and Paachana are the highly integral part of Ayurveda Chikitsa. The two are considered into Sapta Vidha Shamana. Paachana is one among the Dashavidha Laghana. The details of Paachana and Deepana along with their utility is scattered in the lexicons of Ayurveda. The two Upakrama are sometimes used in combination and in some conditions they are solely utilized. The two Upakrama though seem to be similar there are differentiating factors between the two. There seems to be lacunae in the knowledge of Deepana and Paachana as Karma Lakshana of the two are be well defined. Materials and Methods: In the present work the literature has been surfed to find the relevant information about Deepana and Paachana. Discussion and Conclusion: The study reveals that Agni Mahabhoota Pradhana Dravya can effectively bring about both Deepana and Paachana Karma. Both Karma share a common identity that the both enhance Agni Bala. The two differ from each other with respect to their utility. Deepana is essential to maintain the Agni in Deepta Avastha for Swasthya Rakshana, while Paachana is essential in Atura Avastha when Ama or Saamatva prevails in Shareera

    The Sensitivity of the Southwest Monsoon Phytoplankton Bloom to Variations in Aeolian Iron Deposition over the Arabian Sea

    Get PDF
    [1] A coupled, 3-D biophysical ocean general circulation model is used to investigate how aeolian iron deposition affects the Arabian Sea ecosystem. Two separate aeolian iron deposition fields, derived from the GISS and GOCART atmospheric transport models, have been applied as surface boundary conditions. The model results exhibit widespread biogeochemical sensitivity to the choice of deposition field. With GOCART deposition, SW Monsoon phytoplankton blooms in the western and central Arabian Sea are enhanced and exhibit greater realism. The central Arabian Sea bloom is supported by supplemental input of horizontally advected iron from a pool that undergoes a yearlong progression that begins in the Gulf of Oman, where the difference in aeolian iron enrichment between the two deposition fields is most prevalent. The GOCART-enhanced blooms result in a more pronounced shift toward netplankton, an increase in euphotic zone export flux of up to a 20% during the SW Monsoon and an additional annual biogenic export of 3.5 TgC. The potential ramifications of regional N-cycle alteration through stimulation of N2-fixation that is promoted by significant aeolian mineral flux needs to be explored. The canonical thinking that the northern Arabian Sea is invariably iron replete is now being challenged by both our model results and recent observational studies. As well, our results indicate that Arabian Sea iron concentrations are strongly modulated by the specific nature of aeolian mineral deposition. Thus climate or land use influences on dust mobilization could exercise leading-order controls on regional biogeochemical variability, metabolic status and air-sea exchanges of CO2

    Arabian Sea Response to Monsoon Variations

    Get PDF
    This study aims to quantify the impact of strong monsoons on the mixed layer heat budget in the Arabian Sea by contrasting forced ocean general circulation model simulations with composite strong and weak monsoon winds. Strong (weak) monsoons are defined as years with zonal component of the Somali Jet being greater (smaller) by more than a standard deviation of the long-term mean of the National Centers for Environmental Prediction reanalysis winds. Coastal upwelling is shown to be demonstrably stronger for strong monsoons leading to significant surface cooling, shallower thermoclines, and deeper mixed layers. A coupled ecosystem model shows that surface chlorophyll, primary, and export production are indeed higher for strong monsoons compared to weak monsoons driven by the supply of colder, nutrient-rich waters from greater than 100 m depths. The surprising result is that a strong monsoon results in stronger negative wind stress curl away from the coasts and drives Ekman pumping that results in a deeper thermocline. The weaker stratification and larger turbulent kinetic energy from the winds drive deeper mixed layers leading entrainment cooling with some contribution from the advection of colder upwelled waters from the coastal upwelling regions. Thus the strong monsoons, in fact, enhance oceanic heat uptake indicating that ocean dynamics are cooling the surface and driving the lower atmosphere which has implications for the interpretation of monsoon variability from paleorecords

    Nitrogen uptake and regeneration pathways in the equatorial Pacific: a basin scale modeling study

    Get PDF
    It is well known that most primary production is fueled by regenerated nitrogen in the open ocean. Therefore, studying the nitrogen cycle by focusing on uptake and regeneration pathways would advance our understanding of nitrogen dynamics in the marine ecosystem. Here, we carry out a basin-scale modeling study, by assessing model simulations of nitrate and ammonium, and rates of nitrate uptake, ammonium uptake and regeneration in the equatorial Pacific. Model-data comparisons show that the model is able to reproduce many observed features of nitrate, ammonium, such as the deep ammonium maximum (DAM). The model also reproduces the observed de-coupling of ammonium uptake and regeneration, i.e., regeneration rate greater than uptake rate in the lower euphotic zone. The de-coupling largely explains the observed DAM in the equatorial Pacific Ocean. Our study indicates that zooplankton excretion and remineralization of organic nitrogen play a different role in nitrogen regeneration. Rates of zooplankton excretion vary from <0.01 mmol m<sup>−3</sup> d<sup>−1</sup> to 0.1 mmol m<sup>−3</sup> d<sup>−1</sup> in the upper euphotic zone while rates of remineralization fall within a narrow range (0.015–0.025 mmol m<sup>−3</sup> d<sup>−1</sup> . Zooplankton excretion contributes up to 70% of total ammonium regeneration in the euphotic zone, and is largely responsible for the spatial variability of nitrogen regeneration. However, remineralization provides a steady supply of ammonium in the upper ocean, and is a major source of inorganic nitrogen for the oligotrophic regions. Overall, ammonium generation and removal are approximately balanced over the top 150 m in the equatorial Pacific

    A Simulation of Biological Prosesses in the Equatorial Pacific Warm Pool at 165 deg E

    Get PDF
    A nine-year simulation (1984-1992) of biological processes in the equatorial Pacific Warm Pool is presented. A modified version of the 4-component (phytoplankton, zooplankton, nitrate and ammonium) ecosystem model by McClain et al. (1996) is used. Modifications include use of a spectral model for computation of PAR and inclusion of fecal pellet remineralization and ammonium nitrification. The physical parameters (horizontal and vertical velocities and temperature) required by the ecosystem model were derived from an improved version of the Gent and Cane (1990) ocean general circulation model (Murtugudde and Busalacchi, 1997). Surface downwelling spectral irradiance was estimated using the clear-sky models of Frouin et al. (1989) and Gregg and Carder (1990) and cloud cover information from the International Satellite Cloud Climatology Project (ISCCP). The simulations indicate considerable variability on interannual time scales in all four ecosystem components. In particular, surface chlorophyll concentrations varied by an order of magnitude with maximum values exceeding 0.30 mg/cu m in 1988, 1989, and 1990, and pronounced minimums during 1987 and 1992. The deep chlorophyll maximum ranged between 75 and 125 meters with values occasionally exceeding 0.40 mg/cu m. With the exception of the last half of 1988, surface nitrate was always near depletion. Ammonium exhibited a subsurface maximum just below the DCM with concentrations as high as 0.5 mg-atN/cu m . Total integrated annual primary production varied between 40 and 250 gC/sq m/yr with an annual average of 140 gC/sq m/yr. Finally, the model is used to estimate the mean irradiance at the base of the mixed layer, i.e., the penetration irradiance, which was 18 Watts/sq m over the nine year period. The average mixed layer depth was 42 m

    Biophysical feedbacks in the tropical Pacific

    Get PDF
    This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability

    Pratyaksha Badhakara Bhava - The Intention behind invention

    Get PDF
    The Pramanas are the tool to achieve the Prama. i.e. Yathartha Jnana. Among 4 Pramanas mentioned by Acharyas, Aptopadesha Jnana is the first and foremost important Pramana followed by Pratyksha.[1] Acharya Sushruta opines the Jnana Vruddhi takes place when the Pratyaksha and Aptopadeshajnana goes hand in hand.[2] Pratyaksha Jnana is most valuable than any other Pramanajanya Jnana. There are certain factors where the Pratyaksha Jnana is not perceived properly named as Pratyaksha Badhakara Bhavas.[3] Understanding of these factors to avoid any fault in clinical practice is essential task. Rectification of these factors with the support of technology while in treatment is discussed further in this article

    Strong sea surface cooling in the eastern equatorial Pacific and implications for Galápagos Penguin conservation

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 6432–6437, doi:10.1002/2015GL064456.The Galápagos is a flourishing yet fragile ecosystem whose health is particularly sensitive to regional and global climate variations. The distribution of several species, including the Galápagos Penguin, is intimately tied to upwelling of cold, nutrient-rich water along the western shores of the archipelago. Here we show, using reliable, high-resolution sea surface temperature observations, that the Galápagos cold pool has been intensifying and expanding northward since 1982. The linear cooling trend of 0.8°C/33 yr is likely the result of long-term changes in equatorial ocean circulation previously identified. Moreover, the northward expansion of the cold pool is dynamically consistent with a slackening of the cross-equatorial component of the regional trade winds—leading to an equatorward shift of the mean position of the Equatorial Undercurrent. The implied change in strength and distribution of upwelling has important implications for ongoing and future conservation measures in the Galápagos.K.B.K. acknowledges support from the Alfred P. Sloan Foundation, the James E. and Barbara V. Moltz Fellowship administered by the Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI), and the National Science Foundation (NSF) Physical Oceanography program (grant OCE–1233282). S.J. acknowledges support from WHOI. C.W.B. was supported by the NOAA Center for Satellite Applications and Research.2016-02-0
    • …
    corecore