118 research outputs found

    Phenolic compounds and antioxidant activity of oat bran by various extraction methods

    Get PDF
    Recent studies have suggested that the health promoting capabilities of oats are due to its antioxidants (tocopherols, tocotrienols, and sterols) found within the bran along with phenolic compounds, such as avenanthramides, p-hydroxybenoic acid and vanillic acid. Long-chain fatty acid oxidation is directly responsible for most off-flavors in food. Since oat bran is a good source of antioxidants, a concentrated extract could be used as a natural preservative, for foods rich in unsaturated long-chain fatty acids. Three methods, traditional solvent (TSE), microwave-assisted solvent (MAS), and supercritical fluid treatment (SFT), were used to obtain the extracts. One extraction temperature in TSE, 60°C, and two extraction temperatures in MAS, 60°C and 100°C, were tested. The DPPH (2, 2\u27-diphenyl-1-picrylhydrazyl) method demonstrated that the MAS-100°C was the most efficient extraction in the group, thereby serving as MAS sample against the TSE and supercritical-treated samples. For the treated samples, oat bran was exposed to supercritical CO2 before extraction. Three different temperatures of CO2 were tested, 25°C, 50°C, and 75°C. The treated samples then underwent MAS-100°C to gather extracts for analysis. The experimental results for the DPPH test favored the SFT-75°C treatment at a 40μl concentration. Therefore, SFT-75°C served as the treated sample in the final three experiments. Antioxidant activity was further tested using two other methods: cholesterol oxidation and the DHA model. The total phenolic content was determined using Folin-Ciocalteau Method. The SFT-75°C treatment showed statistically higher results for antioxidant activity in both the cholesterol oxidation and DHA oxidation experiments over the TSE-60°C or MAS-100°C. In terms of total phenolics, the SFT-75°C treatment showed statistically higher results than TSE or MAS-100°C in terms of catechin equivalency, but no statistical difference was seen among the treatments when compared on the basis of total phenolics per gram of original oat bran sample. However, extraction techniques can be evaluated based on extract yield, which this research demonstrated would be SFE-75°C. In conclusion, the SFT-75°C treatment was the optimal extraction based on antioxidant activity, catechin equivalency for total phenolics, and sample yield. This information could be used in the future development of food products as a natural antioxidant source

    How can marketing theory be applied to policy design to deliver on sustainable agriculture in England?

    Get PDF
    Marketing theory was applied to develop a qualitative tool to predict levels of compliance based on involvement with the issue (policy objective) and involvement with the intervention (regulation). Based on an understanding farmer decision-making, the I3 Response Framework can help identify strategies that can strongly influence compliance, providing more efficient targeting of resources for policy. We report on further testing by application to the issue of water quality and the regulations around slurry storage as part of the Nitrate Pollution Prevention Regulations 2008 as applicable to dairy farmers in the Derwent catchment of North Yorkshire, EnglandPolicy, I3 Response Framework, involvement, water quality, slurry storage, Nitrogen Vulnerable Zone, regulation, Nitrate Pollution Prevention Regulations 2008, NPPR2008, Agricultural and Food Policy,

    Extraordinarily high biomass benthic community on Southern Ocean seamounts

    Get PDF
    We describe a previously unknown assemblage of seamount-associated megabenthos that has by far the highest peak biomass reported in the deep-sea outside of vent communities. The assemblage was found at depths of 2–2.5 km on rocky geomorphic features off the southeast coast of Australia, in an area near the Sub-Antarctic Zone characterised by high rates of surface productivity and carbon export to the deep-ocean. These conditions, and the taxa in the assemblage, are widely distributed around the Southern mid-latitudes, suggesting the high-biomass assemblage is also likely to be widespread. The role of this assemblage in regional ecosystem and carbon dynamics and its sensitivities to anthropogenic impacts are unknown. The discovery highlights the lack of information on deep-sea biota worldwide and the potential for unanticipated impacts of deep-sea exploitation

    Biogeochemical iron budgets of the Southern Ocean south of Australia : decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4034, doi:10.1029/2009GB003500.Climate change is projected to significantly alter the delivery (stratification, boundary currents, aridification of landmasses, glacial melt) of iron to the Southern Ocean. We report the most comprehensive suite of biogeochemical iron budgets to date for three contrasting sites in subantarctic and polar frontal waters south of Australia. Distinct regional environments were responsible for differences in the mode and strength of iron supply mechanisms, with higher iron stocks and fluxes observed in surface northern subantarctic waters, where atmospheric iron fluxes were greater. Subsurface waters southeast of Tasmania were also enriched with particulate iron, manganese and aluminum, indicative of a strong advective source from shelf sediments. Subantarctic phytoplankton blooms are thus driven by both seasonal iron supply from southward advection of subtropical waters and by wind-blown dust deposition, resulting in a strong decoupling of iron and nutrient cycles. We discuss the broader global significance our iron budgets for other ocean regions sensitive to climate-driven changes in iron supply.T.W. was supported by a BDI grant from CNRS and Région PACA, by CNRS PICS project 3604, and by the “Soutien à la mer” CSOA CNRS-INSU. P.W.B. was supported by the New Zealand FRST Coasts and Oceans OBI. This research was supported by the Australian Government Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems CRC (ACE CRC) and Australian Antarctic Science project 2720

    Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons

    Get PDF
    A number of factors have recently caused mass coral mortality events in all of the world's tropical oceans. However, little is known about the timing, rate or spatial variability of the loss of reef-building corals, especially in the Indo-Pacific, which contains 75% of the world's coral reefs.We compiled and analyzed a coral cover database of 6001 quantitative surveys of 2667 Indo-Pacific coral reefs performed between 1968 and 2004. Surveys conducted during 2003 indicated that coral cover averaged only 22.1% (95% CI: 20.7, 23.4) and just 7 of 390 reefs surveyed that year had coral cover >60%. Estimated yearly coral cover loss based on annually pooled survey data was approximately 1% over the last twenty years and 2% between 1997 and 2003 (or 3,168 km(2) per year). The annual loss based on repeated measures regression analysis of a subset of reefs that were monitored for multiple years from 1997 to 2004 was 0.72 % (n = 476 reefs, 95% CI: 0.36, 1.08).The rate and extent of coral loss in the Indo-Pacific are greater than expected. Coral cover was also surprisingly uniform among subregions and declined decades earlier than previously assumed, even on some of the Pacific's most intensely managed reefs. These results have significant implications for policy makers and resource managers as they search for successful models to reverse coral loss

    A review of nitrogen isotopic alteration in marine sediments

    Get PDF
    Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle

    Biogeochemical and ecological impacts of boundary currents in the Indian Ocean

    Get PDF
    Monsoon forcing and the unique geomorphology of the Indian Ocean basin result in complex boundary currents, which are unique in many respects. In the northern Indian Ocean, several boundary current systems reverse seasonally. For example, upwelling coincident with northward-flowing currents along the coast of Oman during the Southwest Monsoon gives rise to high productivity which also alters nutrient stoichiometry and therefore, the species composition of the resulting phytoplankton blooms. During the Northeast Monsoon most of the northern Indian Ocean boundary currents reverse and favor downwelling. Higher trophic level species have evolved behavioral responses to these seasonally changing conditions. Examples from the western Arabian Sea include vertical feeding migrations of a copepod (Calanoides carinatus) and the reproductive cycle of a large pelagic fish (Scomberomorus commerson). The impacts of these seasonal current reversals and changes in upwelling and downwelling circulations are also manifested in West Indian coastal waters, where they influence dissolved oxygen concentrations and have been implicated in massive fish kills. The winds and boundary currents reverse seasonally in the Bay of Bengal, though the associated changes in upwelling and productivity are less pronounced. Nonetheless, their effects are observed on the East Indian shelf as, for example, seasonal changes in copepod abundance and zooplankton community structure. In contrast, south of Sri Lanka seasonal reversals in the boundary currents are associated with dramatic changes in the intensity of coastal upwelling, chlorophyll concentration, and catch per unit effort of fishes. Off the coast of Java, monsoon-driven changes in the currents and upwelling strongly impact chlorophyll concentrations, seasonal vertical migrations of zooplankton, and sardine catch in Bali Strait. In the southern hemisphere the Leeuwin is a downwelling-favorable current that flows southward along western Australia, though local wind forcing can lead to transient near shore current reversals and localized coastal upwelling. The poleward direction of this eastern boundary current is unique. Due to its high kinetic energy the Leeuwin Current sheds anomalous, relatively high chlorophyll, warm-core, downwelling eddies that transport coastal diatom communities westward into open ocean waters. Variations in the Leeuwin transport and eddy generation impact many higher trophic level species including the recruitment and fate of rock lobster (Panulirus cygnus) larvae. In contrast, the transport of the Agulhas Current is very large, with sources derived from the Mozambique Channel, the East Madagascar Current and the southwest Indian Ocean sub-gyre. Dynamically, the Agulhas Current is upwelling favorable; however, the spatial distribution of prominent surface manifestations of upwelling is controlled by local wind and topographic forcing. Meanders and eddies in the Agulhas Current propagate alongshore and interact with seasonal changes in the winds and topographic features. These give rise to seasonally variable localized upwelling and downwelling circulations with commensurate changes in primary production and higher trophic level responses. Due to the strong influence of the Agulhas Current, many neritic fish species in southeast Africa coastal waters have evolved highly selective behaviors and reproductive patterns for successful retention of planktonic eggs and larvae. For example, part of the Southern African sardine (Sardinops sagax) stock undergoes a remarkable northward migration enhanced by transient cyclonic eddies in the shoreward boundary of the Agulhas Current. There is evidence from the paleoceanographic record that these currents and their biogeochemical and ecological impacts have changed significantly over glacial to interglacial timescales. These changes are explored as a means of providing insight into the potential impacts of climate change in the Indian Ocean

    Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change

    Get PDF
    There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions

    Disturbance and the Dynamics of Coral Cover on the Great Barrier Reef (1995–2009)

    Get PDF
    Coral reef ecosystems worldwide are under pressure from chronic and acute stressors that threaten their continued existence. Most obvious among changes to reefs is loss of hard coral cover, but a precise multi-scale estimate of coral cover dynamics for the Great Barrier Reef (GBR) is currently lacking. Monitoring data collected annually from fixed sites at 47 reefs across 1300 km of the GBR indicate that overall regional coral cover was stable (averaging 29% and ranging from 23% to 33% cover across years) with no net decline between 1995 and 2009. Subregional trends (10–100 km) in hard coral were diverse with some being very dynamic and others changing little. Coral cover increased in six subregions and decreased in seven subregions. Persistent decline of corals occurred in one subregion for hard coral and Acroporidae and in four subregions in non-Acroporidae families. Change in Acroporidae accounted for 68% of change in hard coral. Crown-of-thorns starfish (Acanthaster planci) outbreaks and storm damage were responsible for more coral loss during this period than either bleaching or disease despite two mass bleaching events and an increase in the incidence of coral disease. While the limited data for the GBR prior to the 1980's suggests that coral cover was higher than in our survey, we found no evidence of consistent, system-wide decline in coral cover since 1995. Instead, fluctuations in coral cover at subregional scales (10–100 km), driven mostly by changes in fast-growing Acroporidae, occurred as a result of localized disturbance events and subsequent recovery

    Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 22 (2007): PA1215, doi:10.1029/2005PA001205.In a piston core from the central Bering Sea, diatom microfossil-bound N isotopes and the concentrations of opal, biogenic barium, calcium carbonate, and organic N are measured over the last glacial/interglacial cycle. Compared to the interglacial sections of the core, the sediments of the last ice age are characterized by 3‰ higher diatom-bound δ 15N, 70 wt % lower opal content and 1200 ppm lower biogenic barium. Taken together and with constraints on sediment accumulation rate, these results suggest a reduced supply of nitrate to the surface due to stronger stratification of the upper water column of the Bering Sea during glacial times, with more complete nitrate consumption resulting from continued iron supply through atmospheric deposition. This finding extends the body of evidence for a pervasive link between cold climates and polar ocean stratification. In addition, we hypothesize that more complete nutrient consumption in the glacial age subarctic Pacific contributed to the previously observed ice age reduction in suboxia and denitrification in the eastern tropical North Pacific by lowering the nutrient content of the intermediate-depth water formed in the subpolar North Pacific. In the deglacial interval of the Bering Sea record, two apparent peaks in export productivity are associated with maxima in diatom-bound and bulk sediment δ 15N. The high δ 15N in these intervals may have resulted from greater surface nutrient consumption during this period. However, the synchroneity of the deglacial peaks in the Bering Sea with similar bulk sediment δ 15N changes in the eastern Pacific margin and the presence of sediment lamination within the Bering Sea during the deposition of the productivity peaks raise the possibility that both regional and local denitrification worked to raise the δ 15N of the nitrate feeding Bering Sea surface waters at these times.Financial support for this work was provided by NSF grants OCE-0136449, OCE-9981479, ANT-0453680, by BP and Ford Motor Company through the Princeton Carbon Migration Initiative, and by a NDSEG fellowship to B.G.B. Work conducted aboard the USCG Healy (Healy 0202) was funded by grant OPP-9912122
    corecore