740 research outputs found
A systematic review of machine learning techniques related to local energy communities
In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio
Vagus nerve stimulation as a novel treatment for systemic lupus erythematous:study protocol for a randomised, parallel-group, sham-controlled investigator-initiated clinical trial, the SLE-VNS study
INTRODUCTION: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. SLE is treated with immunosuppressants with suboptimal efficacy and high risk of serious side effects. Patients with SLE have increased risk of mortality, organ damage and debilitating treatment-resistant fatigue. Autonomic nervous system dysfunction (AD) is present in approximately half of the patients and may promote autoimmunity by weakening the vagally mediated anti-inflammatory reflex. Recent studies suggest that transcutaneous vagus nerve stimulation (tVNS) has few side effects and beneficial effects on fatigue, pain, disease activity and organ function. This study investigates whether adjuvant tVNS improves measures of fatigue (primary end point), AD, clinical disease activity, inflammation, pain, organ function and quality of life. Hence, this study will contribute to the understanding of AD as a potentially important precursor of fatigue, disease activity, progression and complications in SLE, and how tVNS mechanistically may attenuate this. As adjuvant tVNS use may reduce the need for traditional immunosuppressive therapy, this trial may prompt a shift in the treatment of SLE and potentially other autoimmune disorders. METHODS AND ANALYSIS: Eighty-four patients with SLE with fatigue and AD will be randomised 1:1 to active or sham tVNS in this double-blinded parallel-group study. In period 1 (1 week), participants will receive a 4 min tVNS 4 times daily and report on fatigue daily. After a 2-week pause, period 2 (8 weeks) will entail tVNS twice daily and participants will report on fatigue, pain and disease activity weekly. Secondary end points will be assessed before and after each period and after 1 week in period 2. ETHICS AND DISSEMINATION: The study is approved by the Danish Medical Research Ethical Committees (case no: 2120231) and results will be published in international peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05315739
Swarm electrification: Harnessing surplus energy in off-grid solar home systems for universal electricity access
peer reviewedAchieving universal access to electricity by 2030, as set out by the Sustainable Development Goals, presents a significant challenge given the current rate of progress. A recent promising concept is swarm electrification. Its central idea is the peer-to-peer energy sharing of surplus energy in solar home systems (SHSs) to connect additional neighbors and grow a bottom-up grid. This paper studies the surplus energy in SHSs and its underlying influencing factors as a basis for swarm electrification. An open-source multi-model-based techno-economic analysis of off-grid SHS including surplus energy as a value is presented. Three distinct household types from the tier 3 category in the Multi-tier framework are compared based on their unique ratios of peak-to-average demand and percentage of load consumption during sun hours. A statistical analysis of surplus energy for each household type is presented and energy sharing with additional households at tier 1–2 is simulated. Two economic analysis methods, including surplus energy, are presented and compared: single-objective cost minimization and multi-objective compromise programming. The study finds that a low ratio of demand during sun hours leads to higher surplus energy volumes, while a peak-to-average ratio alone cannot give such indications. Both economic methods suggest that optimizing the SHS design for tier 3 households involves a slight increase in solar power capacity when considering the expected revenue from selling surplus energy to 2–3 households in tiers 1–2. The total cost for the tier 3 households are reduced by 40%−64%, additionally to decreasing their own lost load by 4%−7%, and reducing the up-front cost to get electricity access for the tier 1–2 households by 50% compared to purchasing their own full SHS
An Active Site Aromatic Triad in Escherichia coli DNA Pol IV Coordinates Cell Survival and Mutagenesis in Different DNA Damaging Agents
DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a
nucleotide opposite an otherwise replication-stalling
N2-dG lesion in vitro, and
confers resistance to nitrofurazone (NFZ), a compound that forms these lesions
in vivo. DinB is also known to be part of the cellular
response to alkylation DNA damage. Yet it is not known if DinB active site
residues, in addition to aminoacids involved in DNA synthesis, are critical in
alkylation lesion bypass. It is also unclear which active site aminoacids, if
any, might modulate DinB's bypass fidelity of distinct lesions. Here we
report that along with the classical catalytic residues, an active site
“aromatic triad”, namely residues F12, F13, and Y79, is critical for
cell survival in the presence of the alkylating agent methyl methanesulfonate
(MMS). Strains expressing dinB alleles with single point
mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains
show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in
addition to its role in TLS, modulates DinB's accuracy in bypassing
distinct lesions. The high bypass fidelity of prevalent alkylation lesions is
evident even when the DinB active site performs error-prone NFZ-induced lesion
bypass. The analyses carried out with the active site aromatic triad suggest
that the DinB active site residues are poised to proficiently bypass distinctive
DNA lesions, yet they are also malleable so that the accuracy of the bypass is
lesion-dependent
Photonic hydrogel sensors
Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified
Dynamics of Disks and Warps
This chapter reviews theoretical work on the stellar dynamics of galaxy
disks. All the known collective global instabilities are identified, and their
mechanisms described in terms of local wave mechanics. A detailed discussion of
warps and other bending waves is also given. The structure of bars in galaxies,
and their effect on galaxy evolution, is now reasonably well understood, but
there is still no convincing explanation for their origin and frequency. Spiral
patterns have long presented a special challenge, and ideas and recent
developments are reviewed. Other topics include scattering of disk stars and
the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol
5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in
proofs. Uses emulateapj.st
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity . Here we use 2,009\ua0population-based studies, with measurements of height and weight in more than 112\ua0million adults, to report national, regional and global trends in mean\ua0BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in\ua0some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities\ua0in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories
- …