87 research outputs found

    Three-dimensional Inkjet Printed Solid Oxide Electrochemical Reactors. I. Yttria-stabilized zirconia Electrolyte

    Get PDF
    Solid oxide fuel cell (SOFC) and electrolyser (SOE) performances can be enhanced significantly by increasing the densities of (electrode | electrolyte | pore) triple phase boundaries and improving geometric reproducibility and control over composite electrode | electrolyte microstructures, thereby also aiding predictive performance modelling. We developed stable aqueous colloidal dispersions of yttria-stabilized zirconia (YSZ), a common SOFC electrolyte material, and used them to fabricate 2D planar and highly-customisable 3D microstructures by inkjet printing. The effects of solids fraction, particle size, and binder concentration on structures were investigated, and crack-free, non-porous electrolyte planes were obtained by tailoring particle size and minimising binder concentration. Micro-pillar arrays and square lattices were printed with the optimised ink composition, and a minimum feature size of 35 μm was achieved in sintered structures, the smallest published to-date. YSZ particles were printed and sintered to a 23 μm thick planar electrolyte in a Ni-YSZ|YSZ|YSZ-LSM|LSM electrolyser for CO2 splitting; a feed of 9:1 CO2:CO mixture at 1.5 V and 809 °C produced a current density of −0.78 A cm−2 even without more complex 3D electrode | electrolyte geometries

    Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: a review

    Get PDF
    The review paper overviews principles of inkjet printing and ink formulation, subsequently a literature summary on inkjet-printed solid oxide electrochemical reactors printed with 2D and 3D structures, followed by challenges limiting the technique

    3-D inkjet printed solid oxide electrochemical reactors III. cylindrical pillared electrode microstructures

    Get PDF
    Inkjet printing is a scalable technique that can fabricate customised three-dimensional microstructures, reproducibly, accurately, and with high material utilisation, by printing multiple layers sequentially onto previously printed layers, to produce architectures tailored in this case to electrochemical reactors. Printable yttria-stabilised zirconia (YSZ) and lanthanum strontium manganite (LSM) inks were formulated to enable fabrication of solid oxide electrochemical reactors (SOERs): H2O-H2 | Ni(O)-YSZ | YSZ | YSZ pillars | LSM | O2. Of the geometries studied, equi-sized, hexagonally-arranged cylindrical pillars were predicted to produce the largest ratio of interfacial to geometric (cross-sectional) areas. However, this neglects effects of potential and current density distributions that constrain up-scaling to more modest factors. Hence, using kinetic parameter values from the literature, finite element computational simulations of the pillared SOER in (H2 - O2) fuel cell mode predicted peak power densities of 0.11 W cm−2 at 800 °C, whereas its counterpart with only a planar electrolyte layer produced only 0.05 W cm−2; i.e. the pillars were predicted to enhance peak power densities by ca. 2.3. Arrays of several thousand YSZ cylindrical pillars were printed, with post-sintering diameter, height, and spacing of 25, 95 and 63 μm, respectively. LSM was inkjet-printed onto the pillars, and sintered subsequently, to produce contiguous films ca. 4 μm thick. In (H2 - O2) fuel cell mode at 725, 770, and 795 °C, these reactors produced peak power densities of 0.09, 0.21, 0.30 W cm−2, respectively, 3–6 times greater than the performance of ‘benchmark’ Ni(O)-YSZ | YSZ | LSM reactors inkjet-printed with planar cathodes operating under the same conditions, thereby demonstrating the benefit of inkjet printing as a fabrication technique for SOERs

    Predicting optimal geometries of 3D-printed solid oxide electrochemical reactors

    Get PDF
    Solid oxide electrochemical reactors (SOERs) may be operated in fuel cell (SOFC) or electrolyser (SOE) modes, at temperatures > 800 K, depending on electrolyte and electrode materials. In electrolyser mode, current densities of ≥ ca. 104 A m−2 are achievable at potential differences ideally at the thermoneutral values of 1.285 V for steam splitting or 1.46 V for CO2 splitting at 750 °C. As for large scale chemical processes in general, such reactors are required to be energy efficient, economic, of scalable design and fabrication, and durable ideally over ≥ ca. 10 years. Increasing densities of electrode | electrolyte interfacial areas (and electrode | electrolyte | pore triple phase boundaries) of solid oxide fuel cells or electrolysers offers one means of increasing performance, reproducibility, durability and potentially decreasing cost. Three-dimensional structuring of those interfaces can be achieved by 3D printing, but modelling is required to optimise geometries. Using kinetic parameter values from the literature, COMSOL Multiphysics® finite element software was used to predict effects of 3D geometries, increasing interfacial to geometric area ratios, on SOER performances for YSZ ((ZrO2)0.92(Y2O3)0.08) oxide ion conducting electrolyte and Ni-YSZ electrode based cells, relative to corresponding planar structures with < 10 μm thick planar YSZ electrolyte. For the negative electrode, electrolyte and electrode layers were inkjet printed on Ni(O)-YSZ substrate precursors, then sintered. For the positive electrode, porous lanthanum strontium manganite (LSM: La0.8Sr0.2MnO3-δ) was brush-coated over the (gas-tight) YSZ, then sintered to produce complete SOERs: H2O-H2 | Ni(O)-YSZ | YSZ-YSZ pillars | YSZ-LSM | LSM | O2. Results are reported showing that, in the case of solid YSZ pillars, despite interfacial electrode | electrolyte areas being up scaled by factors of 10–150 depending on height (10–150 μm), current densities were predicted to increase by only ca. 1.14 in electrolysis mode and peak power densities were predicted to increase by ca. 1.93 in fuel cell mode. This was due to increased ionic current path length along the pillars, increasing ohmic potential losses relative to faradaic impedances; as expected, such predictions depend strongly on electrode kinetic parameter values. After sintering the porous Ni(O)-YSZ pillars and their subsequent reduction with H2 to nickel, they were assumed to constitute equipotential surfaces, depending on current collector design. Predicted current densities were up to 1011 mA cm−2, far greater than in solid YSZ pillars, ultimately limited by reactant or product mass transport through porous pillars of increasing height

    Stretchable electronic platform for soft and smart contact lens applications

    Get PDF
    A stretchable platform with spherical-shaped electronics based on thermo- plastic polyurethane (TPU) is introduced for soft smart contact lenses. The low glass transition temperature of TPU, its relatively low hardness, and its proven biocompatibility (i.e., protection of exterior body wounds) fulfill the essential requirements for eye wearable devices. These requirements include optical transparency, conformal fitting, and flexibility comparable with soft contact lenses (e.g., hydrogel-based). Moreover, the viscoelastic nature of TPU allows planar structures to be thermoformed into spherical caps with a well-defined curvature (i.e., eye’s curvature at the cornea: 9 mm). Numerical modeling and experimental validation enable fine-tuning of the thermo - forming parameters and the optimization of strain-release patterns. Such tight control is proven necessary to achieve oxygen permeable, thin, nonde- velopable, and wrinkle-free contact lenses with integrated electronics (silicon die, radio-frequency antenna, and stretchable thin-film interconnections). This work paves the way toward fully autonomous smart contact lenses potentially for vision correction or sensing applications, among others

    Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays

    Get PDF
    Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user???s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user???s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display
    corecore