173 research outputs found

    As contribuições da bioenergética para a formação do profissional de eduação física

    Get PDF
    Orientadora: Rosemary RauchbachMonografia (licenciatura) - Universidade Federal do Paraná. Setor de Ciências Biológicas. Curso de Educação Físic

    Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66364/1/j.1471-4159.2008.05335.x.pd

    Secondary Torsion of Vermiform Appendix with Mucinous Cystadenoma

    Get PDF
    Torsion of the vermiform appendix is a rare disorder, which causes abdominal symptoms indistinguishable from acute appendicitis. We report a case (a 34-year-old male) of secondary torsion of the vermiform appendix with mucinous cystadenoma. This case was characterized by mild inflammatory responses, pentazocine-resistant abdominal pain, and appendiceal tumor, which was not enhanced by the contrast medium on computed tomography presumably because of reduced blood flow by the torsion. These findings may be helpful for the preoperative diagnosis of secondary appendiceal torsion

    Localization of three forms of gonadotropin-releasing hormone in the brain and pituitary of the self-fertilizing fish, Kryptolebias marmoratus

    Get PDF
    The localization of gonadotropin-releasing hormone (GnRH) in the brain and pituitary of the self-fertilizing mangrove killifish Kryptolebias marmoratus was examined by immunohistochemistry and in situ hybridization to understand its neuroendocrine system. The genome assembly of K. marmoratus did not have any sequence encoding GnRH1, but sequences encoding GnRH2 (chicken GnRH-II) and GnRH3 (salmon GnRH) were found. Therefore, GnRH1 was identified by in silico cloning. The deduced amino acid sequence of the K. marmoratus GnRH1 (mature peptide) was identical to that of the medaka GnRH. GnRH1 neurons were detected in the ventral part of the preoptic nucleus by immunohistochemistry and in situ hybridization, and GnRH1-immunoreactive (ir) fibers were observed throughout the brain. GnRH1-ir fibers were in close contact with luteinizing hormone (LH)-ir cells in the pituitary using double immunohistochemistry. GnRH2 neurons were detected in the midbrain tegmentum by immunohistochemistry and in situ hybridization. Although GnRH2-ir fibers were observed throughout the brain, they were not detected in the pituitary. GnRH3 neurons were detected in the lateral part of the ventral telencephalic area by both methods. GnRH3-ir fibers were observed throughout the brain, and a few GnRH3-ir fibers were in close contact with LH-ir cells in the pituitary. These results indicate that GnRH1 and possibly GnRH3 are responsible for gonadal maturation through LH secretion and that all three forms of GnRH function as neurotransmitters or neuromodulators in the brain of K. marmoratus

    F-Actin-Dependent Regulation of NESH Dynamics in Rat Hippocampal Neurons

    Get PDF
    Synaptic plasticity is an important feature of neurons essential for learning and memory. Postsynaptic organization and composition are dynamically remodeled in response to diverse synaptic inputs during synaptic plasticity. During this process, the dynamics and localization of postsynaptic proteins are also precisely regulated. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family. Overexpression of NESH is associated with reduced cell motility and tumor metastasis. Strong evidence of a close relationship between NESH and the actin cytoskeleton has been documented. Although earlier studies have shown that NESH is prominently expressed in the brain, its function and characteristics are yet to be established. Data from the present investigation suggest that synaptic localization of NESH in hippocampal neurons is regulated in an F-actin-dependent manner. The dynamic fraction of NESH in the dendritic spine was analyzed using FRAP (fluorescence recovery after photobleaching). Interestingly, F-actin stabilization and disruption significantly affected the mobile fraction of NESH, possibly through altered interactions of NESH with the F-actin. In addition, NESH was synaptically targeted from the dendritic shaft to spine after induction of chemical LTP (long-term potentiation) and the translocation was dependent on F-actin. Our data collectively support the significance of the F-actin cytoskeleton in synaptic targeting of NESH as well as its dynamics
    corecore