299 research outputs found

    Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications

    Get PDF
    International audienceMacromolecular coatings play an important role in many technological areas, ranging from the car industry to biosensors. Among the different coating technologies, electrochemically triggered processes are extremely powerful because they allow in particular spatial confinement of the film buildup up to the micrometer scale on microelectrodes. Here, we review the latest advances in the field of electrochemically triggered macromolecular film buildup processes performed in aqueous solutions. All these processes will be discussed and related to their several applications such as corrosion prevention, biosensors, antimicrobial coatings, drug-release, barrier properties and cell encapsulation. Special emphasis will be put on applications in the rapidly growing field of biosensors. Using polymers or proteins, the electrochemical buildup of the films can result from a local change of macromolecules solubility, self-assembly of polyelectrolytes through electrostatic/ionic interactions or covalent cross-linking between different macromolecules. The assembly process can be in one step or performed step-by-step based on an electrical trigger affecting directly the interacting macromolecules or generating ionic species

    Mechanisms of Fibrinogen Adsorption on Silica Sensors at Various pHs: Experiments and Theoretical Modeling

    Get PDF
    International audienceThe adsorption kinetics of human serum fibrinogen at silica substrates was studied using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance (QCM) techniques. Measurements were performed at pH 3.5, 4, and 7.4 for various ionic strengths. The experimental data were interpreted in terms of a hybrid random sequential adsorption model. This allowed the mass transfer rate coefficient for the OWLS cell and maximum coverages to be determined at various pHs. The appearance of different, pH-dependent mechanisms of fibrinogen adsorption on silica substrates was confirmed. At pH 3.5 the molecules mostly adsorb in the side-on orientation that produces a low maximum coverage of ca. 1 mg m-2. At this pH, the kinetics derived from the OWLS measurements agree with those theoretically predicted using the convective-diffusion theory. In consequence, a comparison of the OWLS and QCM results allows the water factor and the dynamic hydration of fibrinogen molecules to be determined. At pH 7.4, the OWLS method gives inaccurate kinetic data for the low coverage range. However, the maximum coverage that was equal to ca. 4 mg m-2 agrees with the QCM results and with previous literature results. It is postulated that the limited accuracy of the OWLS method for lower coverage stems from a heterogeneous structure of fibrinogen monolayers, which consist of side-on and end-on adsorbed molecules. One can expect that the results acquired in this work allow development of a robust procedure for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation, which can be exploited for efficient immunosensing purposes

    Spray-assisted polyelectrolyte multilayer buildup: from step-by-step to single-step polyelectrolyte film constructions.

    Get PDF
    The alternate deposition of polyanions and polycations on a solid substrate leads to the formation of nanometer to micrometer films called Polyelectrolyte Multilayers. This step-by-step construction of organic films constitutes a method of choice to functionalize surfaces with applications ranging from optical to bioactive coatings. The method was originally developed by dipping the substrate in the different polyelectrolyte solutions. Recent advances show that spraying the polyelectrolyte solutions onto the substrate represents an appealing alternative to dipping because it is much faster and easier to adapt at an industrial level. Multilayer deposition by spraying is thus greatly gaining in interest. Here we review the current literature on this deposition method. After a brief history of polyelectrolyte multilayers to place the spraying method in its context, we review the fundamental issues that have been addresses so far. We then give an overview the different fields where the method has been applied.journal articlereview2012 Feb 212012 01 26importe

    Nanohybrid biosensor based on mussel-inspired electro-cross-linking of tannic acid capped gold nanoparticles and enzymes

    Get PDF
    Complementary tools to classical analytical methods, enzymatic biosensors are widely applied in medical diagnosis due to their high sensitivity, potential selectivity, and their possibility of miniaturization/automation. Among the different protocols of enzyme immobilization, the covalent binding and cross-linking of enzymes ensure the great stability of the developed biosensor. Obtained manually by drop-casting using a specific cross-linker, this immobilization process is not suitable for the specific functionalization of a single electrode out of a microelectrode array. In the present work, we developed a nanohybrid enzymatic biosensor with high sensitivity by a mussel-inspired electro-cross-linking process using a cheap and abundant natural molecule (tannic acid, TA), gold salt, and native enzymes. Based on the use of a cheap natural compound and gold salt, this electro-cross-linking process based on catechol/amine reaction (i) is versatile, likely to be applied on any kind of enzymes, (ii) does not require the synthesis of a specific cross-linker, (ii) gives enzymatic biosensors with high and very stable sensitivity over two weeks upon storage at room temperature and (iv) is temporally and spatially controlled, allowing the specific functionalization of a single electrode out of a microelectrode array. Besides the development of microbiosensors, this process can also be used for the design of enzymatic biofuel cells

    Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry

    Get PDF
    International audienceInspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate

    Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry

    Get PDF
    Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and biscatechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing “reactive” quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff’s base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/biscatechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate

    Assemblage de films polymères par réaction click électrocontrôlée

    Get PDF
    Les multicouches de polyélectrolytes, systèmes auto-assemblés par adsorptions successives de polycations et polyanions, peinent à trouver des applications concrètes en raison de leur fragilité mécanique et du temps nécessaire à leur assemblage. Pour améliorer leur tenue mécanique, nous avons développé une méthode d'assemblage couche-par-couche par liaisons covalentes de films polymères. Des films formés de polymères portant des groupements alcynes et azides ont ainsi été réticulés par une réaction click catalysée par les ions Cu+ obtenus par voie électrochimique. Pour améliorer le mode d'assemblage, l'auto-construction en une seule étape de films par approche morphogénique, a été développée. Cette approche, confinée à la surface et caractérisée par la présence en solution de l'ensemble des constituants, marque une rupture. Elle permet ainsi un contrôle spatial de l'assemblage des films et la combinaison de plusieurs modes d'interactions pendant leur assemblage. Des films dont la cohésion repose sur des interactions covalentes, hôtes-invités et supramoléculaires, ont ainsi été assemblés. L'introduction de nanoparticules métalliques dans les films (multicouches et auto-construits) a également été effectuée dans le but de développer des électrodes de grande surface spécifique.Polyelectrolyte multilayer films, built by alternated adsorption of polycations and polyanions, face two main challenges: their construction process is tedious and their mechanical stability is poor. We developped a layer-by-layer strategy to improve the film stability by covalent reticulation of the polymers chains by click chemistry. Polymers bearing alkyne and azide functions were reticulated by triggering electrochemically the production of Cu+ catalyst ions. A one pot morphogen driven self-construction strategy was also developped to improve the buildup process of the films.In this case, all the constituants are simultaneously present in solution while the film grows up only at the electrode. Films based on covalent, host-guest and supramolecular interactions were obtained and the possibility of combining different interactions was also demonstrated. Nanoparticles were also included in layer-by-layer and self-constructed films in order to improve the electrode specific area.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Compact Saloplastic Poly(Acrylic Acid)/Poly(Allylamine) Complexes: Kinetic Control Over Composition, Microstructure, and Mechanical Properties

    Get PDF
    Durable compact polyelectrolyte complexes (CoPECs) with controlled porosity and mechanical properties are prepared by ultracentrifugation. Because thestarting materials, poly(allylamine hydrochloride) (PAH) and poly(acrylic acidsodium salt) (PAA), are weak acids/bases, both composition and morphology are controlled by solution pH. In addition, the nonequilibrium nature of polyelectrolyte complexation can be exploited to provide a range of compositions and porosities under the infl uence of polyelectrolyte addition order and speed, and concentration. Confocal microscopy shows these “saloplastic” materials to be highly porous, where pore formation is attributed to a combination of deswelling of the polyelectrolyte matrix and expansion of small inhomogenities by osmotic pressure. The porosity (15–70%) and the pore size ( < 5 μ m to > 70 μ m) of these materials can be tuned by adjusting the PAA to PAH ratio, the salt concentration, and the pH. The modulus of these CoPECs depends on the ratio of the two polyelectrolytes, with stoichiometric complexes being the stiffest due to optimized charge pairing, which correlates with maximized crosslinking density. Mechanical properties, pore sizes, and pore density of these materials make them well suited to three dimensional supports for tissue engineering applications

    Bioactive Seed Layer for Surface-Confined Self-Assembly of Peptides

    Get PDF
    International audienceThe design and control of molecular systems that self-assemble spontaneously and exclusively at or near an interface represents a real scientific challenge. We present here a new concept, an active seed layer that allows to overcome this challenge.It is based on enzyme-assisted self-assembly. An enzyme, alkaline phosphatase, which transforms an original peptide,Fmoc-FFY(PO 4 2À), into an efficient gelation agent by dephosphorylation, is embedded in a polyelectrolyte multilayer and constitutes the "reaction motor". A seed layer composed of a polyelectrolyte covalently modified by anchoring hydro-gelator peptides constitutes the top of the multilayer. This layer is the nucleation site for the Fmoc-FFY peptide self-assembly. When such a film is brought in contact with a Fmoc-FFY-(PO42-) solution, a nofiber network starts to form almost instantaneously which extents up to several micrometers into the solution after several hours. We demonstrate that the active seed layer allows convenient control over the self-assembly kinetics and the geometric features of the fiber network simply by changing its peptide density
    corecore