510 research outputs found

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.

    Get PDF
    Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However, the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown. Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait. Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic (SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1, Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and inflammatory processes. Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored to complement human studie

    Dynamical R-parity Breaking at the LHC

    Full text link
    In a class of extensions of the minimal supersymmetric standard model with (B-L)/left-right symmetry that explains the neutrino masses, breaking R-parity symmetry is an essential and dynamical requirement for successful gauge symmetry breaking. Two consequences of these models are: (i) a new kind of R-parity breaking interaction that protects proton stability but adds new contributions to neutrinoless double beta decay and (ii) an upper bound on the extra gauge and parity symmetry breaking scale which is within the large hadron collider (LHC) energy range. We point out that an important prediction of such theories is a potentially large mixing between the right-handed charged lepton (ece^c) and the superpartner of the right-handed gauge boson (W~R+\widetilde W_R^+), which leads to a brand new class of R-parity violating interactions of type μc~νμcec\widetilde{\mu^c}^\dagger\nu_\mu^c e^c and \widetilde{d^c}^\dagger\u^c e^c. We analyze the relevant constraints on the sparticle mass spectrum and the LHC signatures for the case with smuon/stau NLSP and gravitino LSP. We note the "smoking gun" signals for such models to be lepton flavor/number violating processes: ppμ±μ±e+ejjpp\to \mu^\pm\mu^\pm e^+e^-jj (or τ±τ±e+ejj\tau^\pm\tau^\pm e^+e^-jj) and ppμ±e±bbˉjjpp\to\mu^\pm e^\pm b \bar{b} jj (or τ±e±bbˉjj\tau^\pm e^\pm b \bar{b} jj) without significant missing energy. The predicted multi-lepton final states and the flavor structure make the model be distinguishable even in the early running of the LHC.Comment: 30 pages, 13 figures, 6 tables, reference adde

    The role of parental achievement goals in predicting autonomy-supportive and controlling parenting

    Get PDF
    Although autonomy-supportive and controlling parenting are linked to numerous positive and negative child outcomes respectively, fewer studies have focused on their determinants. Drawing on achievement goal theory and self-determination theory, we propose that parental achievement goals (i.e., achievement goals that parents have for their children) can be mastery, performance-approach or performance-avoidance oriented and that types of goals predict mothers' tendency to adopt autonomy-supportive and controlling behaviors. A total of 67 mothers (aged 30-53 years) reported their goals for their adolescent (aged 13-16 years; 19.4 % girls), while their adolescent evaluated their mothers' behaviors. Hierarchical regression analyses showed that parental performance-approach goals predict more controlling parenting and prevent acknowledgement of feelings, one autonomy-supportive behavior. In addition, mothers who have mastery goals and who endorse performance-avoidance goals are less likely to use guilt-inducing criticisms. These findings were observed while controlling for the effect of maternal anxiety

    Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    Get PDF
    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest.We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2% of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1% of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63% (5/7; Camponotus sp. 1) to 0% (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that anttermite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Characterization of Polymorphic Microsatellites in the Giant Bulldog Ant, Myrmecia brevinoda and the Jumper Ant, M. pilosula

    Get PDF
    The ant genus Myrmecia Fabricius (Hymenoptera: Formicidae) is endemic to Australia and New Caledonia, and has retained many biological traits that are considered to be basal in the family Formicidae. Here, a set of 16 dinucleotide microsatellite loci were studied that are polymorphic in at least one of the two species of the genus: the giant bulldog ant, M. brevinoda Forel, and the jumper ant, M. pilosula Smith; 13 are novel loci and 3 are loci previously published for the genus Nothomyrmecia Clark (Hymenoptera: Formicidae). In M. brevinoda, the total of 12 polymorphic microsatellites yielded a total of 125 alleles, ranging from 3 to 18 with an average of 10.42 per locus; the observed and expected heterozygosities ranged from 0.4000 to 0.9000 and from 0.5413 to 0.9200, respectively. In M. pilosula, the 9 polymorphic loci yielded a total of 67 alleles, ranging from 3 to 12 with an average of 7.44 per locus; the observed and expected heterozygosities ranged from 0.5625 to 0.9375 and from 0.4863 to 0.8711, respectively. Five loci were polymorphic in both target species. In addition, 15 out of the 16 loci were successfully amplified in M. pyriformis. These informative microsatellite loci provide a powerful tool for investigating the population and colony genetic structure of M. brevinoda and M. pilosula, and may also be applicable to a range of congeners considering the relatively distant phylogenetic relatedness between M. pilosula and the other two species within the genus Myrmecia
    corecore