133 research outputs found

    Physics searches at the LHC

    Full text link
    With the LHC up and running, the focus of experimental and theoretical high energy physics will soon turn to an interpretation of LHC data in terms of the physics of electroweak symmetry breaking and the TeV scale. We present here a broad review of models for new TeV-scale physics and their LHC signatures. In addition, we discuss possible new physics signatures and describe how they can be linked to specific models of physics beyond the Standard Model. Finally, we illustrate how the LHC era could culminate in a detailed understanding of the underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific feedback is welcome and encouraged. v2: text, references and Overview Table added; feedback still welcom

    Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present final searches of the anomalous gammaWW and ZWW trilinear gauge boson couplings from WW and WZ production using lepton plus dijet final states and a combination with results from Wgamma, WW, and WZ production with leptonic final states. The analyzed data correspond to up to 8.6/fb of integrated luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96 TeV. We set the most stringent limits at a hadron collider to date assuming two different relations between the anomalous coupling parameters Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2 TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154, -0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization, and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings parameterization. We also present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL

    Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for a narrow scalar or vector resonance decaying into Zgamma with a subsequent Z decay into a pair of electrons or muons. The data for this search were collected with the D0 detector at the Fermilab Tevatron ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0) fb-1 of data, we observe 49 (50) candidate events in the electron (muon) channel, in good agreement with the standard model prediction. From the combination of both channels, we derive 95% C.L. upper limits on the cross section times branching fraction (sigma x B) into Zgamma. These limits range from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5 (3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Tevatron-for-LHC Report: Top and Electroweak Physics

    Get PDF
    The top quark and electroweak bosons (W and Z) represent the most massive fundamental particles yet discovered, and as such refer directly to the Standard Model's greatest remaining mystery: the mechanism by which all particles gained mass. This report summarizes the work done within the top-ew group of the Tevatron-for-LHC workshop. It represents a collection of both Tevatron results, and LHC predictions. The hope is that by considering and comparing both machines, the LHC program can be improved and aided by knowledge from the Tevatron, and that particle physics as a whole can be enriched. The report includes measurements of the top quark mass, searches for single top quark production, and physics of the electroweak bosons at hadron colliders

    Top Quark Physics

    Get PDF
    We review the prospects for studies of the top quark at the LHC.We review the prospects for studies of the top quark at the LHC. Members of the working group who have contributed to this document are: A.Ahmadov, G.Azuelos, U.Baur, A.Belyaev, E.L.Berger, W.Bernreuther, E.E.Boos, M.Bosman, A.Brandenburg, R.Brock, M.Buice, N.Cartiglia, F.Cerutti, A.Cheplakov, L.Chikovani, M.Cobal-Grassmann, G.Corcella, F.del Aguila, T.Djobava, J.Dodd, V.Drollinger, A.Dubak, S.Frixione, D.Froidevaux, B.Gonzalez Pineiro, Y.P.Gouz, D.Green, P.Grenier, S.Heinemeyer, W.Hollik, V.Ilyin, C.Kao, A.Kharchilava, R. Kinnunen, V.V.Kukhtin, S.Kunori, L.La Rotonda, A.Lagatta, M.Lefebvre, K.Maeshima, G.Mahlon, S.Mc Grath, G.Medin, R.Mehdiyev, B.Mele, Z.Metreveli, D.O'Neil, L.H.Orr, D.Pallin, S.Parke, J.Parsons, D.Popovic, L.Reina, E.Richter-Was, T.G.Rizzo, D.Salihagic, M.Sapinski, M.H.Seymour, V.Simak, L.Simic, G.Skoro, S.R.Slabospitsky, J.Smolik, L.Sonnenschein, T.Stelzer, N.Stepanov, Z.Sullivan, T.Tait, I.Vichou, R.Vidal, D.Wackeroth, G.Weiglein, S.Willenbrock, W.W

    Photoproduction of J/psi and of high mass e+e- in ultra-peripheral Au+Au collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We present the first measurement of photoproduction of J/psi and of two-photon production of high-mass e+e- pairs in electromagnetic (or ultra-peripheral) nucleus-nucleus interactions, using Au+Au data at sqrt(s_NN) = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au^{star} nuclei. The event sample consists of 28 events with m_{e+e-} > 2 GeV/c^2 with zero like-sign background. The measured cross sections at midrapidity of d\sigma / dy (J/psi + Xn, y=0) = 76 +/- 33 (stat) +/- 11 (syst) micro b and d^2\sigma/dm dy (e^+e^- + Xn, y=0) = 86 +/- 23 (stat) +/- 16 (syst) micro b/(GeV/c^2) for m_{e+e-} \in [2.0,2.8] GeV/c^2 are consistent with various theoretical predictions.Comment: 345 authors from 52 institutions, 20 pages, 4 figures, 3 tables. Submitted to Physics Letters B. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of the WZ→ℓΜℓℓWZ\rightarrow \ell\nu\ell\ell cross section and limits on anomalous triple gauge couplings in ppˉp\bar{p} collisions at s\sqrt{s} = 1.96 TeV

    Get PDF
    We present a new measurement of the WZ→ℓΜℓℓWZ\rightarrow \ell\nu\ell\ell (ℓ=e,ÎŒ\ell = e,\mu) cross section and limits on anomalous triple gauge couplings. Using 4.1 fb−1^{-1} of integrated luminosity of ppˉp\bar{p} collisions at s=1.96\sqrt{s} = 1.96 TeV, we observe 34 WZWZ candidate events with an estimated background of 6.0±0.46.0 \pm 0.4 events. We measure the WZWZ production cross section to be 3.90−0.90+1.063.90^{+1.06}_{-0.90} pb, in good agreement with the standard model prediction. We find no evidence for anomalous WWZWWZ couplings and set 95% C.L. limits on the coupling parameters, −0.075<λZ<0.093-0.075 < \lambda_{Z} < 0.093 and −0.027<ΔÎșZ<0.080-0.027 < \Delta\kappa_{Z} < 0.080, in the HISZ parameterization for a Λ=2\Lambda = 2 TeV form factor scale. These are the best limits to date obtained from the direct measurement of the WWZWWZ vertex.Comment: 8 pages, 7 figures, 2 table

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    • 

    corecore