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We present searches for the anomalous γ W W and Z W W trilinear gauge boson couplings from W W and
W Z production using lepton plus dijet final states and a combination with results from W γ , W W , and
W Z production with leptonic final states. The analyzed data correspond to up to 8.6 fb−1 of integrated
luminosity collected by the D0 detector in pp̄ collisions at

√
s = 1.96 TeV. We set the most stringent

limits at a hadron collider to date assuming two different relations between the anomalous coupling
parameters �κγ , λ, and �g Z

1 for a cutoff energy scale Λ = 2 TeV. The combined 68% C.L. limits are
−0.057 < �κγ < 0.154, −0.015 < λ < 0.028, and −0.008 < �g Z

1 < 0.054 for the LEP parameterization,
and −0.007 < �κ < 0.081 and −0.017 < λ < 0.028 for the equal couplings parameterization. We also
present the most stringent limits of the W boson magnetic dipole and electric quadrupole moments.

© 2012 Elsevier B.V. Open access under CC BY license. 
In the standard model (SM), the neutral vector bosons, γ and Z ,
do not interact among themselves, while the charged vector
bosons, W ± , couple with the neutral ones and among themselves
through trilinear and quartic gauge interactions. The most general
γ W W and Z W W interactions can be described using a Lorentz
invariant effective Lagrangian that contains fourteen dimension-
less couplings, seven each for γ W W and Z W W [1,2]. Assuming
C (charge) and P (parity) conservation and electromagnetic gauge
invariance, i.e. gγ

1 = 1 where gγ
1 is the C and P conserving tri-

linear gauge boson coupling, reduces the number of independent
couplings to five, and the Lagrangian terms take the form:

LV W W

gV W W
= igV

1

(
W †

μν W μV ν − W †
μVν W μν

)

+ iκV W †
μWν V μν + i

λV

M2
W

W †
λμW μ

ν V νλ, (1)

1 Visitor from Augustana College, Sioux Falls, SD, USA.
2 Visitor from The University of Liverpool, Liverpool, UK.
3 Visitor from UPIITA-IPN, Mexico City, Mexico.
4 Visitor from DESY, Hamburg, Germany.
5 Visitor from SLAC, Menlo Park, CA, USA.
6 Visitor from University College London, London, UK.
7 Visitor from Centro de Investigacion en Computacion, IPN, Mexico City, Mexico.
8 Visitor from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.
9 Visitor from Universidade Estadual Paulista, São Paulo, Brazil.
where W μ denotes the W boson field, V μ is either the photon
(V = γ ) or the Z boson (V = Z ) field, Wμν = ∂μWν − ∂ν Wμ ,
Vμν = ∂μVν − ∂ν Vμ , and MW is the mass of the W boson. The
global coupling parameters gV W W are gγ W W = −e and g Z W W =
−e cot θW , as in the SM, where e and θW are the magnitude
of the electron charge and the weak mixing angle, respectively.
In the SM, the five remaining couplings are λγ = λZ = 0 and
g Z

1 = κγ = κZ = 1. Any deviation of these couplings from their pre-
dicted SM values would be an indication for new physics [3] and
could provide information on a mechanism for electroweak sym-
metry breaking. These deviations are denoted as the anomalous
trilinear gauge couplings (ATGCs) �κV and �g Z

1 defined as κV − 1
and g Z

1 − 1, respectively. The W boson magnetic dipole moment,
μW , and electric quadrupole moment, qW , are related to the cou-
pling parameters by:

μW = e

2MW
(1 + κγ + λγ ), qW = − e

M2
W

(κγ − λγ ). (2)

If the coupling parameters have non-SM values, the amplitudes
for gauge boson pair production may grow with energy, eventu-
ally violating tree-level unitarity. Unitarity violation can be con-
trolled by parameterizing the ATGCs as dipole form factors with
a cutoff energy scale, Λ. The ATGCs then take the form a(ŝ) =
a0/(1 + ŝ/Λ2)2 in which

√
ŝ is the center-of-mass energy of the

http://creativecommons.org/licenses/by/3.0/
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colliding partons and a0 is the coupling value in the limit ŝ → 0.10

The quantity Λ is interpreted as the energy scale where the new
phenomenon responsible for the ATGCs is directly observable. At
the Tevatron the cutoff scale Λ = 2 TeV is chosen such that the
unitarity limits are close to, but not tighter than, the coupling lim-
its set by data.

We assume two scenarios for studying the ATGCs. The parame-
terization used by the LEP experiments [4] (we refer to this as the
LEP parameterization) assumes the following relation between the
ATGCs:

�κZ = �g Z
1 − �κγ · tan2 θW , and λZ = λγ = λ, (3)

which is a consequence of requiring the effective low-energy La-
grangian [5], constructed from the electroweak gauge bosons and
the Higgs doublet field, to be invariant under a SU(2)L × U (1)Y

gauge symmetry. In the equal couplings scenario [2], the γ W W
and the Z W W couplings are set equal to each other, which is a
consequence of any model that includes mixing of neutral gauge
bosons. These couplings are sensitive to interference effects be-
tween the photon and Z -exchange diagrams in W W production.
Electromagnetic gauge invariance requires that �g Z

1 = �gγ
1 = 0

and

�κZ = �κγ = �κ and λZ = λγ = λ. (4)

In the following analyses, we consider these two scenarios and set
limits on �κγ , λ, and �g Z

1 assuming the relations above with Λ =
2 TeV.

Previously published combined limits on ATGCs at the Tevatron
come from the D0 Collaboration from a combination of W γ →

νγ , W W → 
ν
ν , W W + W Z → 
ν j j and W Z → 
νee channels
( j is a jet, 
 is an electron, e, or muon, μ, and ν is a neutrino)
with integrated luminosity, L, up to 100 pb−1 [6], and from the
CDF Collaboration from a combination of W W + W Z → 
ν j j and
W γ → 
νγ channels with L≈ 350 pb−1 [7]. The LEP experiments
published ATGC limits analyzing primarily W W production [8–11]
while the CMS and ATLAS experiments at the LHC pp collider have
published limits on γ W W /Z W W couplings from individual W γ ,
W W and W Z final states [12,13].

In this Letter, we measure the coupling parameters at the
γ W W and Z W W trilinear vertices through the study of gauge
boson pair production. The W W final state is sensitive to both the
γ W W and Z W W couplings. On the other hand, the W Z and W γ
final states each only have sensitivity to the Z W W and γ W W
coupling, respectively. First, we present new 4.3 fb−1 ATGC re-
sults from W W + W Z → 
ν j j production and new 8.6 fb−1 ATGC
results from W Z → 
ν

 production where a W boson decays
leptonically and the other boson decays into a dijet or dilepton
pair. These results are then combined with previously published
ATGC measurements from W γ → 
νγ [14,15], W W → 
ν
ν [16]
and W W + W Z → 
ν j j [17] production which analyzed 4.9 fb−1,
1.0 fb−1 and 1.1 fb−1 of integrated luminosity, respectively. The
1.1 fb−1 of integrated luminosity used in the previous analysis of

ν j j final states is independent from the data analyzed in this Let-
ter. Each measurement used data collected by the D0 detector [18]
from pp̄ collisions at

√
s = 1.96 TeV delivered by the Fermilab

Tevatron Collider.
The D0 detector is a general purpose collider detector consisting

of a central tracking system located within a 2 T superconducting
solenoidal magnet, a hermetic liquid-argon and uranium calorime-
ter [19], and an outer muon system [20] surrounding 1.8 T iron

10 Limits on anomalous couplings presented in this Letter are given as the low
energy limits of the couplings.
toroids. Details on the reconstruction and identification criteria for
electrons, muons, jets, and missing transverse energy, /E T , and for
selection of W γ → 
νγ , W W → 
ν
ν , W W + W Z → 
ν j j, and
W Z → 
ν

 final states can be found elsewhere [14–17,21,22].

The analysis of W W + W Z → 
ν j j final states extends a previ-
ous D0 analysis of 4.3 fb−1 of integrated luminosity which mea-
sured the W W and W Z cross sections [21]. To select W W +
W Z → 
ν j j candidates, we require a single reconstructed elec-
tron (muon) with transverse momentum pT > 15 (20) GeV and
pseudorapidity |η| < 1.1 (2.0),11 /E T > 20 GeV, two or three re-
constructed jets with pT > 20 GeV and |η| < 2.5, and the W
transverse mass [23], M
ν

T (GeV) > 40 − 0.5/E T . The reconstructed

transverse momentum of the two most energetic jets (p jj
T ) of se-

lected 
ν j j candidates is used to search for ATGCs. In order to
maximize the sensitivity to ATGCs, only candidate events within a
dijet invariant mass in the range of 55 < M jj < 110 GeV are stud-
ied.

The ATGC analysis of W Z → 
ν

 final states builds upon a
previous D0 measurement of the W Z cross section [22] with
8.6 fb−1 of integrated luminosity and uses the reconstructed trans-
verse momentum of the two leptons (p



T ) originating from the Z
boson. To select W Z → 
ν

 candidates, we require /E T > 20 GeV,
at least two oppositely charged electrons (muons) with |η| < 3.0
(2.0), p1

T > 20 (15) GeV and p2
T > 15 (10) GeV, and with an invari-

ant mass 60 < M

 < 120 GeV. An additional electron or muon is
required to have pT > 15 GeV. In the case of three like-flavor lep-
tons, the oppositely charged lepton pair with M

 more consistent
with the Z boson mass is assigned to the Z decay provided that at
least one of the two leptons has pT > 25 GeV. Otherwise the event
is rejected.

The SM W W + W Z → 
ν j j and W Z → 
ν

 production and
most of the other background processes are modeled using Monte
Carlo (MC) simulation. In 
ν j j production the dominant back-
ground is due to the production of a vector boson (V = W , Z )
in association with jets from light or heavy flavor parton produc-
tion followed by the production of singe top quarks or top quark
pairs. These backgrounds are modeled by MC simulation, while the
multijet background is determined from data. In 
ν

 production
the dominant Z/γ ∗ → 

, Z Z and Zγ backgrounds are modeled
with MC. Detailed information about the background modeling
can be found elsewhere [21,22]. The SM W W + W Z → 
ν j j and
W Z → 
ν

 events are generated with pythia [24] using CTEQ6L1
parton distribution functions (PDFs) [25]. pythia is a leading or-
der (LO) generator, therefore we correct the event kinematics and
the acceptance of 
ν j j events for next-to-LO (NLO) and resumma-
tion effects. To derive this correction we use mc@nlo [26] with
CTEQ6.1M PDFs interfaced to herwig [27] for parton showering
and hadronization. Comparing pythia to mc@nlo kinematics at
the generator level after final state radiation, we parameterize a
two-dimensional correction matrix in the pT of the diboson sys-
tem and that of the highest-pT boson, and use it to reweight
the pythia 
ν j j events. The event yields for the W W → 
ν j j
and W Z → 
ν j j production are normalized to the SM NLO cross
sections of σ(W W ) = 11.7 ± 0.8 pb and σ(W Z) = 3.5 ± 0.3 pb
calculated with mcfm [28] using MSTW2008 PDFs. The above pro-
cedure is designed to give NLO predictions at the detector level for
the SM contributions to the diboson processes. The W Z → 
ν



events are also generated using pythia with CTEQ6L1 PDFs and
thus also need to be corrected as a function of diboson pT to

11 D0 uses a coordinate system with the z axis running along the proton beam
axis. The angles θ and φ are the polar and azimuthal angles, respectively. Pseudo-
rapidity is defined as η = − ln[tan(θ/2)], where θ is measured with respect to the
proton beam direction.
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match predictions from the NLO event generator powheg [29]. The
event yields for W Z → 
ν

 production are normalized to the SM
NLO cross section of σ(W Z) = 3.2 ± 0.1 pb calculated for the Z
boson invariant mass range of 60 < M Z < 120 GeV with mcfm and
MSTW2008 PDFs.

All MC events undergo a geant-based [30] detector simulation
and are reconstructed using the same algorithms as used for D0
data. The effect of multiple pp̄ interactions is included by overlay-
ing data events from random beam crossings on simulated events.
We apply corrections to the MC to account for differences with
data in reconstruction and identification efficiencies of leptons and
jets. Trigger efficiencies measured in data are applied to MC. The
instantaneous luminosity profile and z distribution of the pp̄ in-
teraction vertex of each MC sample are adjusted to match those in
data.

To save computing time, we follow a two-step procedure to ex-
tract the ATGCs. We first use the geant-based D0 event simulation
of diboson processes, reweighted with a SM NLO model of dibo-
son production to produce a baseline sample of simulated events
for comparison with data. We then use a simulation with ATGCs
to create a set of predictions relative to the SM, R ∝ σ/σSM . The
ratio R is used to reweight the SM GEANT-based simulation to re-
flect ATGCs. This reweighted simulation is then compared to data
and used to extract possible values of the ATGCs.

The effect of ATGCs is to increase the production cross sec-
tion, especially at high boson transverse momentum, relative to
its SM prediction. We therefore use the corresponding p jj

T and p


T

distributions to set the limits on ATGCs. The SM p jj
T and p



T distri-
butions are reweighted with R at the parton level. The reweighting
method uses the ratio of matrix element squared values with and
without the ATGC component to predict a change of the SM event
rate in the presence of ATGCs. The basis of the reweighting method
is that the equation of the differential cross section, which has a
quadratic dependence on the anomalous couplings, can be written
as:

dσ ∝ |M|2 dx

∝ |M|2SM
|M|2
|M|2SM

dx

∝ |M|2SM

[
1 + A�κ + B(�κ)2 + Cλ + Dλ2 + E�κλ + · · ·]dx

∝ dσSM · R(�κ,λ, . . .), (5)

where dσ is the differential cross section that includes the contri-
bution from the ATGCs; dσSM is the SM differential cross section;
|M|2 is the matrix element squared in the presence of ATGCs;
|M|2SM is the matrix element squared in the SM; A, B , C , D , E ,
etc. are reweighting coefficients; and x is a kinematic variable sen-
sitive to ATGCs.

In the LEP parametrization, Eq. (5) is parametrized with the
three couplings �κγ , λ, and �g Z

1 and nine reweighting coeffi-
cients, A–I . Thus, the weight R in the LEP parametrization scenario
is defined as:

R(�κγ ,λ,�g1)

= 1 + A�κγ + B(�κγ )2 + Cλ + Dλ2 + E�g1

+ F (�g1)
2 + G�κγ λ + H�κγ �g1 + Iλ�g1, (6)

with λ = λγ = λZ and �g1 = �g Z
1 .

In the equal couplings scenario, Eq. (5) is parametrized with the
two couplings �κ and λ and five reweighting coefficients, A–E . In
this case the weight is defined as:

R(�κ,λ) = 1 + A�κ + B(�κ)2 + Cλ + Dλ2 + E�κλ, (7)
with �κ = �κγ = �κZ and λ = λγ = λZ . Depending on the num-
ber of reweighting coefficients, a system of the same number of
equations allows us to calculate their values for each event. Then
for any ATGC combination we can calculate R and apply it to the
SM distribution to describe that kinematic distribution in the pres-
ence of the chosen non-SM TGC. We first calculate Ri (i = 1–5
for the equal couplings scenario and i = 1–9 for the LEP param-
eterization) with a fixed set of ATGCs using a LO prediction from
the mcfm generator (with CTEQ6L1 PDFs). Therefore each mcfm

event is assigned a value of |M|2SM and a set of |M|2 values for
�κγ = ±1, λ = ±1, �g Z

1 = ±1, �κγ λ = +1, �κγ �g Z
1 = +1, and

λ�g Z
1 = +1. For every bin X in the multidimensional phase space

defined by different kinematic distributions, the ratio R is calcu-
lated as:

Ri;X =
∑

j |Mi, j|2X∑
j |MSM

i, j |2X
, (8)

where j indicates the event number in bin X , and i is any of
nine (five) ATGC combinations in the LEP parameterization (equal
couplings scenario). The multidimensional phase space for the
W W → 
ν j j events is defined by a set of kinematic variables at
generator level, namely the transverse momentum (pT ) of the qq̄

system, pqq̄
T , pT of the leading parton, pT of the trailing parton, pT

of the neutrino, pT of the charged lepton, and the invariant mass
of the qq̄ system. For W Z → 
ν j j events, we use the pT distribu-
tion of the quark, the pT distribution of the anti-quark, pqq̄

T , pT of
the neutrino, pT of the charged lepton, and the invariant mass of
the qq̄ system. For W Z → 
ν

 events, X is defined by the trans-
verse momentum of the dilepton system, p



T , where both leptons
originate from the Z boson, pT of the leading and the trailing lep-
tons originating from the Z boson, pT of the lepton originating
from the W boson, and pT of the neutrino.

When searching for ATGCs in the LEP parametrization, we vary
two of the three couplings at a time, leaving the third coupling
fixed to its SM value. This gives the three two-parameter combina-
tions (�κγ ,λ), (�κγ ,�g Z

1 ), and (λ,�g Z
1 ). For the equal couplings

scenario there is only the (�κ,λ) combination. For a given pair of
ATGC values, each SM event is weighted at the generator level by
the appropriate weight Ri;X and all the weights in a reconstructed

p jj
T (or p



T ) bin are summed. Such reweighted SM distributions
are compared to data to determine which ATGCs are most con-
sistent with observation. Kinematic distributions in W γ → 
νγ
and W W → 
ν
ν production sensitive to ATGCs are the ET of
the photon, Eγ

T , and pT distributions of the two leptons, respec-
tively. The effects of ATGCs on the Eγ

T distribution are modeled
using simulated events from the BHO generator [31] which un-
dergo geant-based D0 detector simulation. In case of 
ν
ν final
states, the ATGCs effects on pT distributions of the two leptons
are simulated using the HWZ generator [2] and passed through a
parameterized simulation of the D0 detector that is tuned to data.

In order to verify the derived reweighting parameters, we calcu-
late the weights Ri;X for different �κ , λ, and/or �g Z

1 values, apply
the reweighting coefficients and compare reweighted pT shapes
at the generator level to those predicted by mcfm. This proce-
dure is also repeated after applying generator level selection cuts
similar to those at the reconstructed level to check that the (accep-
tance × efficiency) for reconstructed events is reasonably modeled
by this reweighting method. The agreement in the shape and nor-
malization of the pqq̄

T and p


T distributions used for the ATGC

measurement is within 5% of the mcfm predictions and thus a
conservative systematic uncertainty of 5% has been assigned to the
reweighting method.
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Fig. 1. (Color online.) (a) The p jj
T distribution summed over electron and muon channels from W W + W Z → 
ν j j (l = μ, e) production for data and SM MC predictions (“l.f.”

denotes light partons such as u, d, s or gluon, and “h.f.” denotes heavy-flavor such as c or b). Also shown are expected distributions for an ATGC model with �κγ = 0.2,
and λ = 0.1. (b) The pll

T distribution summed over eee, eμμ, μee and μμμ channels from W Z → 
ν

 production for data, SM MC predictions and for ATGC model with
λ = −0.05 and �g Z

1 = −0.06.

Fig. 2. W W + W Z → 
ν j j (l = μ, e). The 68% and 95% C.L. two-parameter limits on the γ W W /Z W W coupling parameters assuming the LEP (a), (b), (c) and equal couplings
parameterization (d) with Λ = 2 TeV. Black circles indicate the most probable values of ATGCs from the two-parameter fit.
In the ATGC analysis of 
ν j j final states, we consider two
classes of systematic uncertainties: those related to the overall
normalization and efficiencies of the various contributing physi-
cal processes, and uncertainties that, when propagated through the
analysis, impact the shape of the dijet pT distribution. We deter-
mine the dependence of the dijet pT distribution on these uncer-
tainties by varying each parameter by its uncertainty (±1 standard
deviation) and re-evaluating the shape of the dijet pT distribu-
tion. The uncertainties with the largest impact are those related to
background cross sections (6.3–20%), integrated luminosity (6.1%),
the jet energy scale (3–9%) and the jet energy resolution (1–10%)
although the analysis of the 
ν j j final states is fully dominated
by statistical uncertainty. In the analysis of 
ν

 final states the
most important systematic uncertainties arise from the diboson pT

modeling (0.1–0.4%), the lepton/jet energy scale (0.2–6.0%), and the
mis-modeling of lepton/jet resolution (1%). However, the system-
atic uncertainties are negligible compared to statistical uncertain-
ties. Similarly, the 
ν
ν final states are mainly affected by statis-
tical uncertainty while the systematic uncertainties arise from the
background modeling (< 7%), integrated luminosity (6.1%), lepton
identification and trigger efficiencies (< 3%). In the analysis of 
νγ
final states systematic uncertainties due to integrated luminosity
(6.1%), lepton and photon identification (1–5%), background mod-
eling (1–10%) and theoretical predictions on the production cross
sections (3–6%) dominate the total uncertainty.

The limits are determined from a fit of SM and ATGC con-
tributions to the data using the reconstructed variables: the p jj

T
distribution from W W + W Z → 
ν j j production, the p



T distri-
bution from W Z → 
ν

 production, the Eγ

T distribution from
W γ → 
νγ production, and the pT distributions of the two
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Table 1
The 95% C.L. one-parameter limits on ATGCs from W Z → 
ν

 and W W + W Z → 
ν j j (l = μ, e) final states with Λ = 2 TeV. The analyzed integrated luminosity for each
analysis is also presented together with the time period of data collection.

LEP parametrization Integrated luminosity �κγ λ �g Z
1

W Z → 
ν

 8.6 fb−1 (2002–2011) – [−0.077,0.089] [−0.055,0.117]
W W + W Z → 
ν j j 4.3 fb−1 (2006–2009) [−0.27,0.37] [−0.075,0.080] [−0.071,0.137]
Equal couplings parameterization Integrated luminosity �κ λ

W Z → 
ν

 8.6 fb−1 (2002–2011) – [−0.077,0.090]
W W + W Z → 
ν j j 4.3 fb−1 (2006–2009) [−0.078,0.153] [−0.074,0.079]
Fig. 3. W Z → 
ν

 (l = μ, e). The 68% and 95% C.L. two-parameter limits on the
γ W W /Z W W coupling parameters assuming the LEP parametrization with Λ =
2 TeV. The black circle indicates the most probable values of ATGCs from the two-
parameter fit.

leptons from W W → 
ν
ν production. The p jj
T and p



T distribu-
tions from 4.3 fb−1 and 8.6 fb−1 analyses, respectively, are shown
in Fig. 1. The Eγ

T and lepton’s pT distributions, and the p jj
T dis-

tribution from 1.1 fb−1 analysis can be found elsewhere [14–17].
The individual contributions are fit to the data as in the presence
of ATGCs by minimizing the χ2 function with respect to Gaus-
sian priors on each of the systematic uncertainties [32]. The fit is
performed simultaneously on kinematic distributions correspond-
ing to the different sub-channels and data epochs. The remaining
p jj

T distributions for the electron and muon channels from the
1.1 fb−1 W W + W Z → 
ν j j analysis are fit separately and the
χ2 values are summed with those obtained in the simultaneous
fit. The effects of systematic uncertainties on separate samples and
sub-channels due to the same uncertainty are assumed to be 100%
correlated but different uncertainties are assumed to be uncorre-
lated.

The 68% and 95% C.L. limits on ATGCs from the 4.3 fb−1 analy-
sis of W W + W Z → 
ν j j final states in the two-parameter space
are shown in Fig. 2. The limits from the 8.6 fb−1 analysis of
W Z → 
ν

 final states are presented only in the λ − �g Z

1 space
as shown in Fig. 3, because W Z production is weakly sensitive to
�κγ via the relation given by Eq. (3). The 95% C.L. one-parameter
limits, obtained from single parameter fits with all other parame-
ters fixed to their SM values are presented in Table 1.

The resulting 68% and 95% C.L. one-parameter limits from the
combined fit of 
νγ , 
ν
ν , 
ν j j, and 
ν

 final states are shown
in Table 2 and limits in two-parameter space are shown in Fig. 4.
The limits in both scenarios represent an improvement relative
to previous results from the Tevatron [6,7,14–17]. For the LEP
parametrization, our combined measurement with 68% C.L. al-
lowed intervals of κγ = 1.048+0.106

−0.105, λ = 0.007+0.021
−0.022, and g Z

1 =
1.022+0.032

−0.030 presented in this Letter has similar sensitivity to the
results from the individual LEP experiments [8–11]. The combined
D0 limits are more stringent than those set by the ATLAS Col-
Table 2
One-dimensional χ2 minimum and 68% and 95% C.L. allowed intervals on anoma-
lous values of γ W W /Z W W ATGCs from the combined fit of W W + W Z → 
ν j j,
W Z → 
ν

, W γ → 
νγ , and W W → 
ν
ν final states.

Results for LEP parameterization
Parameter Minimum 68% C.L. 95% C.L.

�κγ 0.048 [−0.057,0.154] [−0.158,0.255]
�g Z

1 0.022 [−0.008,0.054] [−0.034,0.084]
λ 0.007 [−0.015,0.028] [−0.036,0.044]
μW (e/2MW ) 2.012 [1.978,2.047] [1.944,2.080]
qW (e/M2

W ) −0.995 [−1.038,−0.953] [−1.079,−0.916]
Results for Equal couplings parameterization
Parameter Minimum 68% C.L. 95% C.L.

�κ 0.037 [−0.007,0.081] [−0.049,0.124]
λ 0.008 [−0.017,0.028] [−0.039,0.042]
μW (e/2MW ) 2.016 [1.982,2.050] [1.948,2.082]
qW (e/M2

W ) −1.009 [−1.050,−0.970] [−1.092,−0.935]

laboration for Λ = 2 TeV [12]. The limits from the CMS Collab-
oration [13] are not directly comparable to our results due to a
different assumption for Λ value that affects a dipole form factor
and thus, the sensitivity to ATGCs [33]. Nevertheless, the combined
D0 limits on �κγ , λ and �g Z

1 are more stringent than both ATLAS
and CMS current limits for Λ → ∞.

Using observed limits we extract measurements of the W bo-
son magnetic dipole and electric quadrupole moments. When as-
suming the LEP parameterization with g Z

1 = 1, we set the 68% C.L.
intervals of μW = 2.012+0.035

−0.034 (e/2MW ) and qW = −0.995+0.042
−0.043

(e/M2
W ). The 68% and 95% C.L. limits on μW and qW in both sce-

narios are shown in Fig. 5.
In summary, we have presented new searches of anomalous

γ W W and Z W W trilinear gauge boson couplings from W W +
W Z → 
ν j j and W Z → 
ν

 channels analyzing 4.3 fb−1 and
8.6 fb−1 of integrated luminosity, respectively, and we set lim-
its on ATGCs for these final states. The limits from 4.3 fb−1 
ν j j
analysis are the best limits to date at a hadron collider in this fi-
nal state. The limits from 8.6 fb−1 
ν

 analysis are comparable
to those set at the LHC and improve relative to previous limits set
in this final state at the Tevatron [34]. We have combined these
results with those previously published from W W + W Z → 
ν j j
(1.1 fb−1), W γ → 
νγ (4.9 fb−1), and W W → 
ν
ν (1.0 fb−1)
final states using up to 8.6 fb−1 of integrated luminosity. No devia-
tion from the SM is found in data. We set the most stringent limits
on �κγ , λ and �g Z

1 at a hadron collider to date complementing
similar measurements performed at LEP and LHC. Using the LEP
parameterization we set the combined 68% C.L. limits of −0.057 <

�κγ < 0.154, −0.015 < λ < 0.028, and −0.008 < �g Z
1 < 0.054.

At 95% C.L. the limits are −0.158 < �κγ < 0.255, −0.036 < λ <

0.044, and −0.034 < �g Z
1 < 0.084. Based on the combination of

all diboson production and decay channels we set the most strin-
gent 68% C.L. constraints on the W boson magnetic dipole and
electric quadrupole moments of μW = 2.012+0.035

−0.034 (e/2MW ) and

qW = −0.995+0.042 (e/M2 ), respectively, to date.
−0.043 W
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Fig. 4. The 68% and 95% C.L. two-parameter limits on the γ W W /Z W W ATGCs �κγ , �λγ and �g Z
1 , assuming the LEP parametrization (a), (b), (c) and on �κ and λ ATGCs

for the equal couplings parameterization (d) with Λ = 2 TeV from the combination of W W + W Z → 
ν j j, W Z → 
ν

, W γ → 
νγ , and W W → 
ν
ν final states (l = μ, e).
Black circles indicate the most probable values of ATGCs from the two-parameter fit.

Fig. 5. Two-dimensional 68% and 95% C.L. limits for the W boson electric quadrupole moment vs. the magnetic dipole moment for (a) LEP parametrization and (b) equal
couplings constraints from the combination of W W + W Z → 
ν j j, W Z → 
ν

, W γ → 
νγ , and W W → 
ν
ν final states (l = μ, e). In both cases we assume Λ = 2 TeV.
Black circles indicate the most probable values of μW and qW from the two-parameter fit.
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