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We present the first measurement of photoproduction of J/ψ and of two-photon production of high-
mass e+e− pairs in electromagnetic (or ultra-peripheral) nucleus–nucleus interactions, using Au + Au
data at

√
sN N = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb ex-

citation of one or both Au� nuclei. The event sample consists of 28 events with me+e− > 2 GeV/c2 with
zero like-sign background. The measured cross sections at midrapidity of dσ/dy ( J/ψ + Xn, y = 0) =
Editor: V. Metag
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PACS:
13.40.-f
13.60.-r
24.85.+p
25.20.-x
25.20.Lj
25.75.-q

76 ± 33(stat)± 11(syst) μb and d2σ/dm dy (e+e− + Xn, y = 0) = 86 ± 23(stat)± 16(syst) μb/(GeV/c2) for
me+e− ∈ [2.0,2.8] GeV/c2 have been compared and found to be consistent with models for photoproduc-
tion of J/ψ and QED based calculations of two-photon production of e+e− pairs.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The idea to use the strong electromagnetic fields present in
high-energy nucleus–nucleus collisions to study photoproduction
at hadron colliders has attracted growing interest in recent years,
see [1–3] for reviews. Electromagnetic interactions can be studied
without background from hadronic processes in ultra-peripheral
collisions (UPC) without nuclear overlap, i.e. impact parameters
larger than the sum of the nuclear radii. This study focuses on
the measurement of exclusively produced high-mass e+e− pairs at
midrapidity in Au + Au collisions at

√
sN N = 200 GeV, Au + Au →

Au + Au + e+e− . The results have been obtained with the PHENIX
detector [4] at the BNL Relativistic Heavy Ion Collider (RHIC).

The electromagnetic field of a relativistic particle can be
represented by a spectrum of equivalent photons. This is the
Weizsäcker–Williams method of virtual quanta [5,6]. The number
of photons in the spectrum is proportional to Z 2, where Z is the
charge number of the particle, and the equivalent two-photon lu-
minosity is thus proportional to Z 4. The strong dependence on
Z favours the use of heavy ions for studying two-photon and
photonuclear processes. The virtualities of the equivalent photons
when the field couples coherently to the entire nucleus are re-
stricted by the nuclear form factor to Q 2 = (ω2/(cγ )2 + q2⊥) �
(h̄/R A)2. Here, ω and q⊥ are the photon energy and transverse
momentum, respectively, R A is the nuclear radius and γ the
Lorentz factor of the beam. At RHIC energies, γ = 108 and the
maximum photon energy in the center-of-mass system is of the or-
der of ωmax ∼ 3 GeV corresponding to maximum photon–nucleon
and two-photon center-of-mass energies of W max

γ N ∼ 34 GeV and
W max

γ γ ∼ 6 GeV.
The exclusive production of an e+e− pair can proceed either

through a purely electromagnetic process (a two-photon interac-
tion to leading order) or through coherent photonuclear production
of a vector meson, which decays into an electron pair. Exclu-
sive photoproduction of vector mesons is usually thought of as
proceeding via Pomeron-exchange, the perturbative-QCD equiva-
lent of which is the exchange of two gluons or a gluon ladder.
The Feynman diagrams for the two leading order processes are
shown in Fig. 1. The two-gluon picture is applicable to produc-
tion of heavy vector mesons, such as the J/ψ , and to production
of lighter mesons at high momentum transfers [7]. The J/ψ pro-
duction cross section is consequently a good probe of the proton
[8] and nuclear gluon distribution, G A(x, Q 2), as well as of vector-
meson dynamics in nuclear matter [9,10]. For J/ψ-production, the
coverage of the PHENIX central tracking arm, −0.35 < η < 0.35
corresponds to a range in the photon–nucleon center-of-mass en-
ergy between 21 < Wγ N < 30 GeV, with a mean 〈Wγ N 〉 = 24 GeV.
This corresponds to photon energies in the rest frame of the tar-
get nucleus of 240 < Eγ < 480 GeV, with 〈Eγ 〉 = 300 GeV. Mid-
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rapidity photoproduction of J/ψ probes nuclear Bjorken-x values
of x = m2

J/ψ/W 2
γ A ≈ 1.5×10−2 [10], where the nuclear gluon den-

sity is partially depleted by “shadowing” effects [11] compared to
the proton.

The strong fields associated with heavy ions at high energies
lead to large probabilities for exchanging additional soft photons
in the same event. Most of these photons have too low energy
to produce particles, but they can excite the interacting nuclei.
The dominating excitation is to a Giant-Dipole Resonance (GDR)
with energies O(10 MeV), which decays by emitting neutrons at
very forward rapidities, providing a very useful means to trigger
on UPCs with Zero-Degree Calorimeters (ZDC). The probability for
having a Coulomb excitation leading to emission of neutrons in at
least one direction in coincidence with coherent J/ψ production
is 55% ± 6% [12]. The probabilities for exchanging one or several
photons factorise, i.e. the Coulomb tagging does not introduce any
bias in the extraction of exclusive J/ψ photoproduction cross sec-
tions from these events [13]. The soft photons leading to moderate
nuclear excitation are indicated to the right of the dashed line in
Fig. 1. Incoherent (or quasi-elastic) vector-meson photoproduction
can also proceed via the interaction of the exchanged photon with
a single nucleon in the nucleus. In that case, J/ψ photoproduction
is always accompanied by nuclear breakup and emission of nucle-
ons in the forward direction [14].

Photoproduction of vector mesons has been studied with lepton
beams first in the 60s [15,16] and more recently at the electron–
proton collider HERA [17,18]. Measurements of photonuclear pro-
duction of ρ mesons [19,20], as well as of two-photon production
of low-mass e+e− pairs [21] in heavy ion interactions have been
performed by the STAR Collaboration. The CDF Collaboration has
studied two-photon production of e+e− pairs [22] and exclusive
production of μ+μ− pairs [23] in pp̄ collisions at the Tevatron.
The PHENIX analysis presented here is the first on heavy final
states in ultra-peripheral nucleus–nucleus collisions. It supersedes
a preliminary study presented earlier [24]. The cross section for
J/ψ and e+e− photoproduction are compared with various theo-
retical calculations [10,14,25–27].

2. Experimental setup

The data presented here were collected with the PHENIX de-
tector at RHIC during the 2004 high-luminosity Au + Au run at√

sN N = 200 GeV. The PHENIX detector [4], is a versatile detec-
tor designed to study the properties of strongly interacting matter
at extreme temperatures and energy densities present in central
heavy ion collisions. The current analysis demonstrates its capa-
bilities to also study ultra-peripheral collisions, which have a very
different event topology. The PHENIX central tracking system [28]
consists of two arms, each covering |η| < 0.35 and 	φ = π/2,
equipped with multi-layer drift chambers (DC) followed by multi-
wire proportional chambers (PC) with pixel-pad readout. The track-
ing arms also have Ring-Imaging-Čerenkov (RICH, with CO2 gas
radiator) detectors [29] and electromagnetic calorimeters (EMCal)
[30] for electron and positron identification. The PHENIX EMCal
consists of six sectors of lead-scintillator sandwich calorimeter
(PbSc, 15552 individual towers with 5.54 cm × 5.54 cm × 37.5 cm,

mailto:jacak@skipper.physics.sunysb.edu
mailto:brant@bnl.gov


324 PHENIX Collaboration / Physics Letters B 679 (2009) 321–329
(a) (b)

Fig. 1. Lowest order Feynman diagrams for exclusive photoproduction of (a) J/ψ and (b) dielectrons, in ultra-peripheral Au + Au collisions. The photons to the right of the
dashed line are soft photons that may excite the nuclei but do not lead to particle production in the central rapidity region. Both diagrams contain at least one photon and
occur when the nuclei are separated by impact parameters larger than the sum of the nuclear radii.
18X0) and two sectors of lead-glass Čerenkov calorimeter (PbGl,
9216 modules with 4 cm × 4 cm × 40 cm, 14.4X0), at a radial dis-
tance of ∼ 5 m from the beam line.

The ultra-peripheral Au + Au events were tagged by neutron
detection at small forward angles in the ZDC. The ZDCs [31,32] are
hadronic calorimeters placed 18 m up- and down-stream of the
interaction point that measure the energy of the neutrons coming
from the Au� Coulomb dissociation with ∼ 20% energy resolution
and cover |θ | < 2 mrad, which is a very forward region.3

The events used in this analysis were collected with the UPC
trigger set up for the first time in PHENIX during the 2004 run
with the following characteristics:

(1) A veto on coincident signals in both Beam–Beam Coun-
ters (BBC, covering 3.0 < |η| < 3.9 and full azimuth) selects
exclusive-type events characterised by a large rapidity gap on
either side of the central arm.

(2) The EMCal-Trigger (ERT) with a 2×2 tile threshold at 0.8 GeV.
The trigger is set if the analog sum of the energy deposit in a
2×2 tile of calorimeter towers is above threshold (0.8 GeV).

(3) At least 30 GeV energy deposited in one or both of the ZDCs is
required to select Au + Au events with forward neutron emis-
sion (Xn) from the (single or double) Au� decay.

The BBC trigger efficiency for hadronic Au + Au collisions is
92 ± 3% [33]. A veto on the BBC trigger has an inefficiency of 8%,
which implies that the most peripheral nuclear reactions could be
a potential background for our UPC measurement if they happen
to have an electron pair in the final state. An extrapolation of the
measured p–p dielectron rate [34] at minv > 2 GeV/c2 to the 8%
most peripheral interactions – scaled by the corresponding number
of nucleon–nucleon collisions (1.6) – results in a negligible contri-
bution (only 0.4 e+e− pairs). On the other hand, the ERT trigger
requirement (2) has an efficiency of 90 ± 10%, and the require-
ment (3) of minimum ZDC energy deposit(s) leaves about 55% of
the coherent and about 100% of the incoherent J/psi events, as dis-
cussed above. All these trigger efficiencies and their uncertainties
are used in the final determination of the production cross sections
below.

The total number of events collected by the UPC trigger was
8.5 M, of which 6.7 M satisfied standard data quality assurance
criteria. The useable event sample corresponds to an integrated lu-
minosity Lint = 141 ± 12 μb−1 computed from the minimum bias
triggered events.

3 Much larger than the crossing angle of Au beams at the PHENIX interaction
point (0.2 mrad).
3. Data analysis

Charged particle tracking in the PHENIX central arms is based
on a combinatorial Hough transform in the track bend plane (per-
pendicular to the beam direction). The polar angle is determined
from the position of the track in the PC outside the DC and the
reconstructed position of the collision vertex [35]. For central colli-
sions, the collision vertex is reconstructed from timing information
from the BBC and/or ZDC. This does not work for UPC events,
which, by definition, do not have BBC coincidences and often do
not have ZDC coincidences. The event vertex was instead recon-
structed from the position of the PC hits and EMCal clusters as-
sociated with the tracks in the event. This gave an event vertex
resolution in the longitudinal direction of 1 cm. Track momenta
are measured with a resolution δp/p ≈ 0.7% ⊕ 1.0%p[GeV/c] in
minimum bias Au + Au nuclear collisions [36]. Only a negligible
reduction in the resolution is expected in this analysis because of
the different vertex resolution.

The following global cuts were applied to enhance the sample
of genuine γ -induced events:

(1) A standard offline vertex cut |vtxz| < 30 cm was required to
select collisions well centered in the fiducial area of the central
detectors and to avoid tracks close to the magnet poles.

(2) Only events with two charged particles were analyzed. This is
a restrictive criterion imposed to cleanly select “exclusive” pro-
cesses characterised by only two isolated particles (electrons)
in the final state. It allows to suppress the contamination of
non-UPC (mainly beam–gas and peripheral nuclear) reactions
that fired the UPC trigger, whereas the signal loss is small (less
than 5%).

Unlike the J/ψ → e+e− analyses in nuclear Au + Au reactions
[36,37] which have to deal with large particle multiplicities, we
did not need to apply very strict electron identification cuts in the
clean UPC environment. Instead, the following RICH- and EMCal-
based offline cuts were used:

(1) RICH multiplicity n0 �2 selects e± which fire 2 or more tubes
around the track within the nominal ring radius.

(2) Candidate tracks with an associated EMCal cluster with dead
or noisy towers within a 2 × 2 tile are excluded.

(3) At least one of the tracks in the pair is required to pass an
EMCal cluster energy cut (E1 > 1 GeV ‖ E2 > 1 GeV) to select
candidate e± in the plateau region above the turn-on curve of
the ERT trigger (which has a 0.8 GeV threshold).

Beyond those global or single-track cuts, an additional “coherent”
identification cut was applied by selecting only those e+e− candi-
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dates detected in opposite arms. Such a cut aims at reducing the
high-pT pairs while improving the detection of the low-pT pairs
expected for γ γ , γ A production. Nevertheless, after all the previ-
ous cuts were applied the influence of this selection is found to be
small; there is only one event in which the e+ and e− are in the
same arm and have me+e− > 2 GeV/c2.

Finally, J/ψ were reconstructed by invariant mass analysis of
the measured e+e− pairs. There was no remaining like-sign back-
ground after the aforementioned analysis cuts.

The cross sections were obtained after correcting the raw num-
ber of signal counts for the geometrical acceptance of our detector
system, and the efficiency losses introduced by the previously de-
scribed analysis cuts. Acceptance and efficiency corrections were
obtained using the PHENIX geant3 [38] simulation package with
input distributions from the starlight Monte Carlo (MC), based on
the models presented in [12,25,39]. The measured γ + p → V + p
cross sections from HERA and fixed target experiments with lep-
ton beams are used as input to the models. starlight well re-
produces the existing d3N/dy dφ dpT distribution of coherent ρ
production in UPC Au + Au events measured at RHIC by STAR
[19,20]. Helicity conservation is assumed in the model, and the an-
gular distribution of the decay products ( J/ψ → e+e−) is given by
dN/d cos(θ) ∝ 1 + cos2(θ) in the J/ψ center-of-mass. The angular
distribution is different from that for ρ production followed by the
decay ρ → π+π− , because of the different spin of the daughters,
as well as from the angular distribution in two-photon interactions
γ + γ → e+e− . We generated 5 × 104 coherent J/ψ and 8 × 106

coherent high-mass e+e− pairs (me+e− > 1 GeV/c2) in Au+Au col-
lisions accompanied by forward neutron emission. The simulated
events were passed through the same reconstruction programme
as the real data.

Table 1
Coherent J/ψ and e+e− (continuum) acceptance and efficiency for |ypair| < 0.35 as
a function of invariant mass range. The last line shows the trigger efficiency.

me+e− [GeV/c2] Acc × ε

J/ψ (2.49 ± 0.25) × 10−2

e+e− [2.0,2.8] (2.24 ± 0.22) × 10−3

e+e− [2.0,2.3] (2.16 ± 0.22) × 10−3

e+e− [2.3,2.8] (2.33 ± 0.23) × 10−3

εtrigg 0.9 ± 0.1
Table 1 summarises the J/ψ and dielectron acceptance and ef-
ficiency correction factors obtained from our simulation studies.
For instance, for J/ψ photoproduction the correction is 1/(2.49 ±
0.25)%, of which the experimental acceptance to detect the decay
electron pair is about 5% (for J/ψ produced at |y| < 0.35). In the
γ γ → e+e− sample, most of the electrons/positrons are emitted at
very forward angles. The fraction of events with |ypair| < 0.35 and
2.0 < me+e− < 2.8 GeV/c2, where both the electron and positron
are within |η| < 0.35 is 1.10%. The corresponding numbers for
2.0 < me+e− < 2.3 GeV/c2 and 2.3 < me+e− < 2.8 GeV/c2 are 1.11%
and 1.08%, respectively. The acceptance and efficiency corrections
have a systematic uncertainty of 10% resulting from the accuracy
of the simulation to describe the detector, the electron identifica-
tion parameters, and the event vertex position resolution.

4. Results and discussion

The measured e+e− invariant mass distribution for the sam-
ple is shown in Fig. 2(a). The amount of background can be es-
timated from the number of like-sign events (i.e. events where
two electrons or two positrons are reconstructed). We find no
like-sign pairs for me±e± > 2 GeV/c2, compared with 28 events
with an e+e− pair with me+e− > 2 GeV/c2. The shape is consis-
tent with the expected contribution from the two processes in
Fig. 1: a continuum distribution corresponding to two-photon pro-
duction of e+e− pairs and a contribution from J/ψ → e+e− . Since
the offline cuts (E1 > 1 GeV ‖ E2 > 1 GeV) cause a sharp drop in
the efficiency for me+e− < 2 GeV/c2, we include only pairs with
me+e− � 2 GeV/c2 in the analysis.

The invariant mass distribution is fitted with a continuum (ex-
ponential) curve combined with a Gaussian function at the J/ψ
peak, as shown by the solid curve in Fig. 2(a). Simulations based
on events generated by the starlight MC (see last paragraphs of
Section 3) processed through geant have shown that the shape
of the measured continuum contribution is well described by an
exponential function dN/dme+e− = A · ecme+e− . Those simulations
allow us to fix the exponential slope parameter to c = −1.9 ±
0.1 GeV−1 c2. The combined data fit is done with three free param-
eters: the exponential normalisation (A), the J/ψ yield and the
J/ψ peak width (the Gaussian peak position has been fixed at the
known J/ψ mass of m J/ψ = 3.097 GeV/c2 [40]). Fig. 2(b) shows
the resulting invariant mass distribution obtained by subtracting
the fitted exponential curve of the dielectron continuum from the
(a) (b)

Fig. 2. Left: (a) Invariant mass distribution of e+e− pairs fitted to the combination of (shaded) a dielectron continuum [exponential distribution] and (hatched) a J/ψ
[Gaussian] signal. The two additional dashed curves indicate the maximum and minimum continuum contributions considered in this analysis (see text). (b) J/ψ invariant
mass distribution after subtracting the fitted dielectron continuum signal in (a).



326 PHENIX Collaboration / Physics Letters B 679 (2009) 321–329
total experimental e+e− pairs distribution. There is a clear J/ψ
peak, the width of which (σ J/ψ ∼ 155 MeV/c2) is consistent with
the J/ψ width from our full MC.

The J/ψ and continuum yields and the corresponding statisti-
cal errors are calculated from the fit. The dashed curves in Fig. 2(a)
show the maximum and minimum e+e− continuum contributions
considered, including both the statistical and systematical uncer-
tainties. The systematic uncertainties were determined varying the
dielectron continuum subtraction method using a power-law form
instead of an exponential function and by modifying the corre-
sponding fitted slope parameters by ±3σ . The propagated uncer-
tainty of the extracted yields was estimated to be one count in
both cases. The total number of J/ψ ’s is: N J/ψ = 9.9 ± 4.1(stat) ±
1.0(syst), and the number of e+e− continuum pairs for me+e− ∈

Table 2
J/ψ → e+e− and e+e− continuum yields obtained from the fit of the data to an
exponential plus Gaussian function per invariant mass range. Systematic errors are
obtained as described in the text.

me+e− [GeV/c2] Yield

J/ψ N J/ψ = 9.9 ± 4.1(stat) ± 1.0(syst)
e+e− [2.0,2.8] Ne+e− = 13.7 ± 3.7(stat) ± 1.0(syst)
e+e− [2.0,2.3] Ne+e− = 7.4 ± 2.7(stat) ± 1.0(syst)
e+e− [2.3,2.8] Ne+e− = 6.2 ± 2.5(stat) ± 1.0(syst)
[2.0,2.8] GeV/c2 is: Ne+e− = 13.7 ± 3.7(stat) ± 1.0(syst). Table 2
shows the obtained results per invariant mass range.

Fig. 3(a) shows a scatter plot of invariant mass me+e− vs. pair
pT. From the plot, it is clear that most of the pairs outside the J/ψ
peak originate in coherent processes with very low pair transverse
momenta (pT � 100 MeV/c), as expected for two-photon interac-
tions. For events with me+e− around the J/ψ mass, however, there
are a few counts at larger pT values which can be ascribed neither
to the experimental pT resolution nor to background events, since
there are no like-sign pairs above 2 GeV/c2. A purely coherent pro-
duction – corresponding to events where the fields couple coher-
ently to all nucleons and the nucleus remains in its ground state
(γ + A → V + A) – would yield pT � 200 MeV/c after reconstruc-
tion. On the other hand, incoherent production (γ + A → V + X )
– dominated by the quasi-elastic vector meson production off one
nucleon inside the nucleus, γ + N → V + N – results in much
larger pT for the photoproduced J/ψ [14]. The cross sections for
coherent and incoherent J/ψ photoproduction in UPCs at RHIC are
expected to be of the same order [14]. We discuss below whether
our data confirm such a prediction.

The transverse momentum distribution of the events with
me+e− > 2 GeV/c2 is shown in Fig. 3(b). For clarity, only points
below pT < 1 GeV/c are drawn. The pT is here the magnitude of
the vector sum of the �pT of the electron and positron. One sees a
(a) (b)

(c) (d)

Fig. 3. Top: (a) Scatter plot of e+e−me+e− vs. pair pT . (b) dN/dpT distribution of the pairs with me+e− ∈ [2.0,6.0] GeV/c2 compared to the Au nuclear form factor, Eq. (1), and
for simplicity showing only points with pT < 1 GeV/c. Bottom: dN/dp2

T distributions of pairs with (c) me+e− ∈ [2.0,2.8] GeV/c2 and (d) me+e− ∈ [2.6,3.6] GeV/c2 compared
to the expected Au nuclear form factor, also for clarity only points with p2

T < 0.7 GeV2/c2 are drawn. Note the difference in scale on the x-axis in the four plots.
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Table 3
Measured J/ψ and e+e− continuum photoproduction cross sections at midrapidity
in ultra-peripheral Au + Au collisions (accompanied with forward neutron emission)
at

√
sNN = 200 GeV. The rightmost column in the lower part shows the starlight

predictions [39].

dσ/dy|y=0 [μb]
J/ψ 76 ± 31(stat) ± 15(syst)

me+e− [GeV/c2] d2σ/dme+e− dy|y=0 [μb/(GeV/c2)]
data starlight

e+e− continuum [2.0, 2.8] 86 ± 23(stat) ± 16(syst) 90
e+e− continuum [2.0, 2.3] 129 ± 47(stat) ± 28(syst) 138
e+e− continuum [2.3, 2.8] 60 ± 24(stat) ± 14(syst) 61

clear enhancement of events with very low transverse momenta,
consistent with coherent production. The squared form-factor of a
gold nucleus,

∣∣FAu
(

p2
T

)∣∣2 =
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∣3

sin(RpT) − RpT cos(RpT)

(RpT)3(1 + (apT)2)

∣
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∣

2

, (1)

is shown for comparison. Here, R = 6.7 fm is the gold radius, and
a = 0.7 fm represents the diffuseness of the nuclear surface [41].
The magnitude of the form-factor is a free parameter fitted to
reproduce the spectra. Fig. 3 also presents the corresponding distri-
bution expressed in terms of the squared momentum transfer from
the target nucleus, p2

T ≈ −t , for events with me+e− corresponding
to the dielectron continuum me+e− ∈ [2.0,2.8] GeV/c2 (Fig. 3(c)
and below the J/ψ-peak, me+e− ∈ [2.6,3.6] GeV/c2 (Fig. 3(d)).
The 4 events with p2

T ≈ 0.1 GeV/c2 in Fig. 3(c) have transverse
momenta slightly above what one would expect for two-photon
production. They could thus be due to some other, incoherent
production process for dielectron pairs. The simulations of the ex-
perimental resolution show, however, that a spread in pT of that
magnitude can also be caused by the experimental resolution. We
therefore include also these events in the calculation of the con-
tinuum cross section.

The extracted yields of J/ψ and e+e− are used to calculate
the final cross section for photoproduction at midrapidity in ultra-
peripheral Au + Au collisions accompanied by forward neutron
emission. For dielectrons at midrapidity (y is the rapidity of the
pair) the double differential cross section is:

d2σe+e−+Xn

dy dme+e−

= Ne+e−

Acc · ε · εtrigg · Lint
· 1

	y
· 1

	me+e−

= 86 ± 23(stat) ± 16(syst) μb/
(
GeV/c2)

for me+e− ∈ [2.0,2.8] GeV/c2 and |y| < 0.35. (2)

For J/ψ at midrapidity (|y| < 0.35) the differential cross sec-
tion is:

dσ J/ψ+Xn

dy
= 1

BR
· N J/ψ

Acc · ε · εtrigg · Lint
· 1

	y

= 76 ± 31(stat) ± 15(syst) μb. (3)

The correction factors (and corresponding uncertainties) are quoted
in Table 1 as described in previous sections, and BR = 5.94% is the
known J/ψ dielectron branching ratio [40]. Table 3 summarises
the measured cross sections per invariant mass interval.

The measured dielectron cross sections at midrapidity are in
very good agreement with the starlight predictions for coherent
dielectron photoproduction (rightmost column of Table 3) [39]. Ex-
clusive dilepton production in starlight is calculated combining
the two equivalent (Weizsäcker–Williams) photon fluxes from each
ion with the Breit–Wheeler formula for γ γ → l+l− . The agree-
ment between starlight and other leading order calculations [42]
is good as long as the pair invariant mass is not too low. A recent
calculation has found that higher order terms suppress the e+e−
cross section by 29% in the invariant mass range 140 < me+e− <

165 MeV/c2 [43]. A reduction of the same magnitude in the invari-
ant mass range considered here, 2.0 < me+e− < 2.8 GeV/c2, would
still be in agreement with our measurement.

The final J/ψ + Xn cross section is compared to the theoretical
predictions computed in references [12,14,25,27,39,44] in Fig. 4.
The rapidity distributions for the coherent production of Strikman
et al. [14] and Ivanov et al. [27] have been scaled down according
to [12] to account for the reduction of the yield expected when
requiring coincident forward neutron emission (Xn). The scaling
has been applied as a function of rapidity with the integrated cross
section being 55% of the original one.

The upper limit of the band covered by the Strikman et al.
predictions corresponds to calculations in the impulse approxima-
tion (no shadowing), and the lower limit corresponds to calcula-
tions using the eikonal (Glauber) model with σ( J/Ψ + N) = 3 mb.
The bands for the calculations of Ivanov et al. corresponds to
two different parameterisations of the dipole cross section [27].
The predictions by [14] and [27] for the coherent and incoherent
photoproduction cross sections are drawn separately in Fig. 4(a)
and summed up in Fig. 4(b). starlight [12,25,39] and Gonçalves–
Machado [44] calculations only evaluate the coherent contribution.

As mentioned above, the measured pair pT distributions sug-
gest coherent J/ψ photoproduction (γ + A → J/ψ + X ) and a
possible additional incoherent (γ + N → J/ψ + X ) contribution at
higher pT. To give an indicative estimate of the size of the incoher-
ent contribution, we can assume that it corresponds to the counts
in the J/ψ mass window with p2

T > 0.1(0.05) GeV2/c2. This cor-
responds to about 4(6) counts, which amounts to a contribution of
about 40(60)% of the total J/ψ production, compatible with the
theoretical calculations [14]. The limited data statistics prevents us
from separating in a more quantitative way the two components.
Note that although the acceptance correction for the J/ψ was cal-
culated using a Monte Carlo which includes only the coherent
component, the obtained correction is also a reasonable approxi-
mation for the incoherent component, provided that quasi-elastic
scattering on a single nucleon, γ + N → V + N , gives the main
contribution. The polarisation of the vector meson will then be the
same as for coherent production, and the reduction in acceptance
because of the different pT range will be of the order of ∼ 10–20%.
If the incoherent contribution to the total J/ψ photoproduction
was 40%, the coherent J/ψ cross section would become ∼ 46 μb.

Despite these uncertainties, the final J/ψ cross section is in
good agreement, within the (still large) statistical errors, with the
theoretical values computed in [12,14,25,27,39,44] as shown in
Fig. 4. The current uncertainties unfortunately preclude any more
detailed conclusion at this point regarding the two crucial ingre-
dients of the models (nuclear gluon shadowing and J/ψ nuclear
absorption cross section). The statistical uncertainties can be im-
proved with significantly higher Au + Au luminosities and a con-
current measurement of the J/ψ in the dimuon decay channel in
the more forward acceptances covered by the PHENIX muon spec-
trometers.

Finally, one can attempt to compare the obtained photonuclear
J/ψ cross sections to those from e–p collisions at HERA by divid-
ing the measured differential cross section (dσ/dy) with the (the-
oretical) equivalent photon spectrum (dNγ /dω). At midrapidity:
σγ A→ J/ψ A = (dσA A→ J/ψ A A/dy)/(2 dNγ /dω), with 2 dNγ /dω = 6.7
(10.5) for the coherent (incoherent) spectrum at a photon–nucleon
center-of-mass energy of 〈Wγ p〉 = 24 GeV [12]. Assuming, for the
sake of simplicity, a 50%–50% contribution from coherent and in-
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(a) (b)

Fig. 4. Measured cross section of J/ψ + Xn production at midrapidity in UPC Au + Au collisions at
√

sNN = 200 GeV. The error bars (boxes) show the statistical (systematical)
uncertainties. When available, the theoretical calculations for the coherent and incoherent components are shown separately in (a), and summed up in (b). The theoretical
calculations (a) in order from top to bottom near y = 0: (short dashed lines) coherent Ivanov et al. [27], (solid line) coherent starlight [12,25,39], (dashed-double-dotted
line) Goncalves–Machado [44], (shaded between short dashed-dotted lines) coherent Strikman et al. [14], (shaded between long dashed-dotted dashed lines) incoherent
Strikman et al. [14], and (long dashed lines) coherent Ivanov et al. [27]. And (b) in order from top to bottom near y = 0: (short dashed lines) Ivanov et al. [27], (shaded
between long dashed-dotted solid lines) Strikman et al. [14], (solid line) starlight [12,25,39], and (dashed–double-dotted line) Goncalves–Machado [44].
coherent interactions in our total ultra-peripheral J/ψ sample,
the extracted photonuclear cross sections are: σ(γ + Au → J/ψ +
Au) = 5.7 ± 2.3(stat) ± 1.2(syst) μb, and σ(γ + Au → J/ψ + X) =
3.6 ± 1.4(stat) ± 0.7(syst) μb, respectively. A fit to the results
from the H1 and ZEUS Collaborations [17,18] over their mea-
sured energy range gives σ(γ + p → J/ψ + p) = 30.5 ± 2.7 nb
at Wγ p = 24 GeV. Therefore, the ratios σ(γ + Au → J/ψ)/σ (γ +
p → J/ψ) = 186 ± 88, 118 ± 54 for the coherent and incoherent
components (statistical and systematic errors assumed indepen-
dent and added in quadrature) are consistent with a scaling of
the photonuclear cross section with the number of nucleons in
gold (A = 179): σ(γ + Au → J/ψ) = Aα σ (γ + p → J/ψ) with
αcoh = 1.01 ± 0.07, and αincoh = 0.92 ± 0.08, respectively.4

5. Summary and conclusions

We have presented the first exclusive photoproduction of
J/ψ → e+e− and high-mass e+e− pairs ever measured in nucleus–
nucleus (as well as hadron–hadron) interactions. The measurement
has been carried out by the PHENIX experiment in ultra-peripheral
Au + Au interactions at

√
sN N = 200 GeV tagged by forward (ZDC)

neutron detection from the (single or double) Au� dissociation.
Clear signals of J/ψ and high mass dielectron continuum have
been found in the data. We have observed 28 e+e− pairs in
me+e− ∈ [2.0,6.0] GeV/c2 with zero like-sign background. Their pT
spectrum is peaked at low pT ≈ 90 MeV/c as expected for coher-
ent photoproduction with a realistic Au nuclear form factor.

The measured number of continuum e+e− events in the
PHENIX acceptance for me+e− ∈ [2.0,2.8] GeV/c2 is: N(e+e−) =
13.7 ± 3.7(stat) ± 1.0(syst). After correcting for acceptance and
efficiency losses and normalising by the measured luminosity,
we obtain a cross section of d2σ/dme+e− dy (e+e− + Xn)|y=0 =

4 Note, for comparison, that repeating the same exercise for the photoproduced
ρ in the STAR UPC measurement [20], σ(γ + Au → ρ + Au) = 530 ± 19(stat) ±
57(syst) μb for 〈Wγ N 〉 ∼ 12.5 GeV, and taking the experimentally-derived value
σ(γ + p → ρ + p) = 9.88 μb from [25], yields αcoh = 0.75 ± 0.02 closer to the
A2/3-scaling expected for soft particle production.
86 ± 23(stat) ± 16(syst) μb/(GeV/c2), which is in good agreement
with theoretical expectations for coherent exclusive dielectron pro-
duction in photon–photon interactions.

The measured invariant mass distribution has a clear peak at
the J/ψ mass with an experimental width in good agreement with
a full geant-based simulation for UPC production and reconstruc-
tion in the PHENIX detector. The measured number of J/ψ mesons
in the PHENIX acceptance is: N( J/ψ) = 9.9 ± 4.1(stat) ± 1.0(syst).
The higher pT distribution suggests an additional incoherent con-
tribution to J/ψ photoproduction in accordance with predictions
[14], but statistical limitations prevent a more quantitative esti-
mate. After correcting for acceptance and efficiency losses and
normalising by the measured luminosity, the total J/ψ photopro-
duction cross section is dσ/dy ( J/ψ + Xn)|y=0 = 76 ± 31(stat) ±
15(syst) μb, which is consistent (within uncertainties) with theo-
retical expectations. The low background in the present data sam-
ple shows that future higher luminosity runs with reduced experi-
mental uncertainties of the measured cross sections will provide
more quantitative information on the nuclear gluon distribution
and J/ψ absorption in cold nuclear matter at RHIC energies.
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