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We present a new measurement of the WZ — (vll (£ = e, j1) cross section and limits on anomalous
triple gauge couplings. Using 4.1 fb~! of integrated luminosity of pp collisions at V8 =1.96 TeV,
we observe 34 W Z candidate events with an estimated background of 6.0 4 0.4 events. We measure
the WZ production cross section to be 3.90fé:88 pb, in good agreement with the standard model
prediction. We find no evidence for anomalous WW Z couplings and set 95% C.L. limits on the
coupling parameters, —0.075 < Az < 0.093 and —0.027 < Axz < 0.080, in the HISZ parameteriza-
tion for a A = 2 TeV form factor scale. These are the best limits to date obtained from the direct

measurement of the WW Z vertex.

PACS numbers: 12.60.Cn, 13.85.Qk, 14.70.Fm, 14.70.Hp

The standard model (SM) of particle physics has been
extensively tested in the past three decades and is found
to be in excellent agreement with experimental obser-
vations. It is widely assumed, however, that the SM is
only a low energy approximation of a more general the-

*with visitors from *Augustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, °SLAC, Menlo Park,
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ory. Therefore, any significant deviation from the SM
predictions yields information on the nature of a more
fundamental theory. Production of W Z pairs is the least
studied diboson process within the SM, as it is a charged
final state and can only be produced at hadron colliders.
A detailed study of this process probes the electroweak
sector of the SM. In addition, searches for new phenom-
ena in the production of heavy gauge boson pairs are
interesting, as many extensions of the SM predict [1—4]
additional heavy gauge bosons that can decay into a WZ
boson pairs.

In the SM, W Z boson pairs are produced at leading or-
der (LO) via ¢-, u-, and s-channels. These channels inter-



fere and maintain unitarity at high energies. In the case
of the t- and u-channels, the W and Z bosons are radiated
from initial state quarks, while the s-channel production
occurs via the WW Z triple gauge boson vertex, which
is a consequence of the non-Abelian nature of the SM.
There are 14 free parameters describing the generalized
Lagrangian for the WWYV interaction [5, 6], where V is
either a Z boson or a photon. Assuming gauge invariance
and conservation of the C, P, and C P symmetries, only
six remain. Their notation and SM values are Ay = 0,
ky = g¢ =1 for the WWV vertex, while the deviations
from the SM values are noted as Axy-, Agl, and A\y.. The
U(1) electromagnetic gauge invariance implies Ag] = 0.
In this Letter, we describe the WW Z vertex in three-
dimensional (3D) phase space of coupling parameters,
Akz, Agf, and Az. We also consider the HISZ parame-
terization [7] that implies Ak = Ag? (cos?Ow —sin’Oy ).
Thus, the WW Z vertex can be described by Axz and Az
only.

If the coupling parameters have non-SM values, new
physics is required to prevent gauge boson production
from violating unitarity at high energies. The high
energy behavior is controlled by introducing a dipole
form factor scale, A, in the description of the couplings,
a(8) = ao/(1+ 8/A?)%, where 3 is the square of the par-
tonic center-of-mass energy and «q is the coupling value
in the low energy approximation.

The W Z production cross section was previously mea-
sured to be o(pp — WZ) = 50718 pb [8] and a(pp —
WZ) = 2777% pb [9], by the CDF and DO collabo-
rations, respectively, using ~1 fb~! of integrated lumi-
nosity. Combined limits on the gauge couplings from
the CERN LEP collider were obtained [10] by the indi-
rect measurement of the WW Z coupling in the eTe™ —
WTW ™~ process. The only direct measurement of WW Z
couplings was performed at the Tevatron. Using 1 fb~!
of integrated luminosity, 95% C.L. limits on anomalous
WW Z couplings were derived [9] by the DO experiment:
—0.17 < Az < 021, —0.14 < Ag? < 0.34 for the
HISZ relation and —0.12 < Axz = Agf{ < 0.29, us-
ing A = 2 TeV. The CDF experiment used data equiv-
alent to 350 pb~! of integrated luminosity that resulted
in 95% C.L. limits on anomalous WW Z couplings [11]:
—0.28 < Az < 0.28 and —0.50 < Akz < 0.43 assum-
ing equal coupling relation between WWZ and WW~
couplings and A = 1.5 TeV.

In this Letter, we present a new measurement of the
W Z production cross section and set 95% C.L. limits on
the deviation from the SM predictions of triple gauge cou-
plings (\z, Arz, Ag?) using data equivalent to 4.1 fb~*
of integrated luminosity of pp collisions at /s = 1.96 TeV
at the Tevatron collected by the D0 detector. This super-
sedes the previous DO measurement. We consider only
the leptonic decays of the W and Z bosons into final
states with electrons, muons, and with missing transverse
energy (Kp) [12] due to the neutrino from the W boson

decay.

The detailed description of the DO detector can be
found elsewhere [13], while here we present a brief
overview of the main sub-systems of the detector. The
inner most part is a central tracking system surrounded
by a 2 T superconducting solenoidal magnet. The two
components of the central tracking system, a silicon mi-
crostrip tracker and a central fiber tracker, are used to
reconstruct interaction vertexes and provide the measure-
ment of the momentum of charged particles. The track-
ing system and a magnet are followed by the calorimetry
system that consists of central (CC) and endcap (EC)
electromagnetic and hadronic uranium-liquid argon sam-
pling calorimeters, and an intercryostat detector (ICD).
A central calorimeter and two endcap calorimeters cover
the pseudorapidity ranges || < 1.1 and 1.5 < |n| < 4.2,
respectively, while the ICD provides coverage for 1.1 <
|n| < 1.4. The calorimeter measures energy of hadrons,
electrons, and photons. Outside of the DO calorimeter
lies a muon system which consists of layers of drift tubes
and scintillation counters and a 1.8 T toroidal magnet.

An electron candidate is identified as a cluster of en-
ergy in the CC, EC, or ICD that is matched to a track
reconstructed in the DO central tracker. Due to different
coverage of the tracker, we select EC electrons within
1.5 < || < 2.5 and CC electrons within |p| < 1.1. The
cluster in the CC or EC must be isolated and have a
shower shape consistent with that of an electron. In the
intercryostat region (ICR), 1.1 < || < 1.5, we cluster en-
ergy found in the CC, ICD, or EC detectors. These ICR
electrons are required to pass a neural network discrimi-
nant that uses the cluster’s shower shape and associated
track information. A muon candidate is reconstructed as
segments within the muon system that are matched to a
track reconstructed in the central tracker. The muon can-
didate track must be isolated from activity in the tracker
and the calorimeter.

The Monte Carlo (MC) samples of W Z signal and ZZ
background are produced using the PYTHIA [14] gener-
ator. The production of the W and Z bosons in as-
sociation with jets (W-jets, Z+jets), collectively re-
ferred to as V-+jets, and t processes are generated using
ALPGEN [15] interfaced with PYTHIA for showering and
hadronization. All MC samples are passed through the
GEANT [16] simulation of the DO detector. The simulated
samples are further corrected to describe the luminosity
dependence of the trigger and reconstruction efficiencies
in data, as well as the beam spot position. All MC sam-
ples are normalized to the luminosity in data using next-
to-leading order (NLO) calculations of the cross sections
and are subject to the same selection criteria as that ap-
plied to data.

We consider four independent decay signatures: eee +
Br, ecep+ By, ppe+ Br, and ppp+ Er. Electron recon-
structed in the ICR must be selected as one of the elec-
trons from the Z boson decay. We require the events to



Channel A x € (%)
eee 1.35£0.15
ee 1.57+£0.12
Lope 1.07£0.11
o 1.34£0.13

TABLE I: Acceptance multiplied by efficiency, A X ¢, of the
full selection criteria for each decay signature. 4 X € values are
calculated with respect to the fully leptonic W Z decay simu-
lation. The uncertainties are both statistical and systematic.

have at least three lepton candidates with py > 15 GeV
that originate from the same vertex and separated from
each other by at least AR = /(A¢)2 + (An)?2 > 0.5.
The event must also have a significant I to account for
the unobserved neutrino. We require K to be above 20
GeV. Events are selected using triggers based on elec-
trons and muons. Since there are multiple high pp lep-
tons from the decay of the heavy gauge bosons the trigger
efficiency is measured to be 98% + 2% for all signatures.

In the WZ candidate selection, we first identify the
leptons from the Z boson decay. We consider all pairs of
electrons or muons, additionally requiring opposite elec-
trical charge in the cases of muon pairs or electron pairs
including an ICR electron. The pair that has an invariant
mass closest to and consistent with the Z boson nominal
mass is selected as coming from the Z boson decay. If
such pair is not found the event is rejected. The lepton
from the W boson decay is selected as the one with the
highest transverse momentum from the remaining unas-
signed muons and CC or EC electrons in the event. This
assignment is studied in the simulation and found to be
100% correct for eep and ppe channels. It is found to
be correct in about 92% and 89% of cases for eece and
pppe signatures, respectively. The effects of misassign-
ment on the product of acceptance and efficiency of the
selection criteria, A X €, are estimated in the signal sim-
ulation. Values of A x ¢ measured using the assignment
method described above differ from those obtained us-
ing MC generator-level information by less than one per
cent. Therefore, the systematic uncertainty on A x e due
to the misassignment is neglected in this analysis.

In order to reduce the background contamination, the
thresholds in the selection criteria are further optimized
for each WZ decay mode by maximizing S/v/S + B.
Here, S is the expected number of W Z signal events and
B is the total number of background events. The simu-
lation is used to estimate S as well as to measure A X ¢
for each decay signature. The kinematic selection crite-
ria are applied to measure the acceptance in simulations,
while the lepton identification efficiencies are measured
in data. The results are summarized in Table I.

The major background is from processes with a Z bo-
son and an additional object misidentified as the lepton

from the W boson decay. Such processes are Z-jets,
77, and Z~. A small background contribution is ex-
pected from processes without Z boson, such as W+jets
and tt processes.

The ZZ and it backgrounds are estimated from the
simulation, while the V+jets, with V being either a Z
or W bosons, and Zv backgrounds are estimated using
data-driven methods.

One or more jets in the V+jets process can be misiden-
tified as a lepton from the W or Z boson decays. To esti-
mate this contribution, we define a false lepton category
for electrons and muons. A false electron is required to
have most of its energy deposited in the electromagnetic
calorimeter and satisfy electron calorimeter isolation cri-
teria, while having a shower shape inconsistent with that
of an electron. A muon candidate is categorized as false
if it fails the isolation criteria. These requirements ensure
that the false lepton is either a misidentified jet or a lep-
ton from the semi-leptonic decay of heavy flavor quarks.
Using a multijet data sample, we measure the ratio of
misidentified leptons passing two different selection cri-
teria, false lepton and signal lepton, as a function of pr
and 7 for electrons and muons, respectively. We then se-
lect a sample of Z boson decays with an additional false
lepton candidate for each final state signature. The con-
tribution from the V4jets background is estimated by
scaling the number of events in this sample by the corre-
sponding pp- or n-dependent misidentification ratio.

Initial or final state radiation in Z~ events can mimic
the signal process if the photon either converts into eTe™
pair or when a central track is wrongly matched to a pho-
ton. As a result, the Zv process is a background to two
out of the four final state signatures with W — ev de-
cays. To estimate the contribution from this background,
we measure the rate at which a photon is misidentified
as an electron. This is estimated using a data sample of
7 — pp events with a final state radiation photon, since
it offers an almost background-free source of photons due
to the invariant mass, M (puy), constraint to the Z boson
mass. The muon decay of the Z boson is chosen to avoid
an ambiguity when assigning the electromagnetic shower
to the final state photon candidate. The misidentification
rate is measured as a function of the pr of the electro-
magnetic shower. The Zv contribution is estimated by
multiplying the pp-dependent misidentification rate by
the photon pr distribution in the Z~ NLO MC simula-
tion [17].

The selection yields 34 W7 candidate events with an
estimated 23.3 £ 1.5 signal, and 6.0 &= 0.6 background
events. The number of observed candidate events as well
as the expected numbers of signal and background events
for each signature are summarized in Table II. The dis-
tribution of the invariant mass of the Z boson candidates
is given in Fig. 1. The transverse mass of the W boson
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FIG. 1. (Color online) Invariant mass distribution of selected
Z candidates in data (black points), with W Z signal (open
histogram) and total background (dark histogram) overlaid.
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Background D0.411V1
SM Wz
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FIG. 2. (Color online) Transverse mass distribution of se-
lected W candidates in data (black points), with WZ sig-
nal (open histogram) and total background (dark histogram)
overlaid.

candidate is calculated as follows

MTW =\ J —cos(4x- (WPt)), 1)
where Eij, and (fe are transverse energy and azimuthal
angle, respectively, of the electron or muon selected as the

W boson decay product and 4>"T is the azimuthal angle
of the missing transverse momentum. The distribution
of the W boson candidates is given in Fig. 2.

Several sources of systematic uncertainty are consid-
ered. The systematic uncertainties on the lepton iden-
tification efficiencies are 5%, 4%, and 6% for CC/EC
electrons, muons, and ICR electrons, respectively. The
systematic uncertainty assigned to the PDF choice is 5%.
A systematic uncertainty of 5% is assigned on A x e due
to modeling of the kinematics of the W Z system. In ad-
dition, we assign 7% [18] and 10% [19] systematic uncer-

tainty to the estimated it and ZZ backgrounds, respec-
tively, due to the uncertainty on their theoretical cross
sections. The major sources of systematic uncertainty on
the estimated y+jets contribution are the $T require-
ment and the statistics in the multijet sample used to
measure the lepton misidentification ratios. These ef-
fects are estimated independently for each signature and
found to be between 20-30%. The systematic uncertainty
on the Z~f background is estimated to be 40% and 58%
for the eee and ¢tyite channels, respectively.

A likelihood method [20] is used to combine the
four measurements, taking into account the correlations
among the systematic uncertainties on the expected sig-
nal and the estimated background contributions. The
cross section is a(WZ) = 3.90lg gg (stat + syst) =+
0.31 (lumi) pb. The uncertainties are dominated by
the statistics of the number of observed candidates.
The luminosity uncertainty includes 6.1% relative uncer-
tainty [21] due to the luminosity measurement and the
normalization uncertainty of the background contribu-
tions estimated from MC simulation.

The presence of anomalous WW Z couplings would
lead to both an increase in the cross section and a change
in the pt spectrum of the W and Z bosons. We use the
Z boson pt distribution to set limits on the coupling pa-
rameters using a form factor scale A = 2 TeV. The Z
boson pt spectra from data, the SM, and two anomalous
coupling predictions are shown in Fig. 3. The difference
is most pronounced in the last bin, which includes also
the events above 150 GeV.

l'.J? - —e— Data
0 - 11111 Background
Ci% 20 _ SM WZ + Background
1 [— X = -0.1, Ak = 0.2
W 15 X = -0.1, Ak = -0.2
10
5

°0 20 40 60 80 100 120 140
ZpT(GeV)

FIG. 3: (Color online) The Z boson pr spectrum from data
(points), total background (dark histogram), the SM W Z sin-
gle + total background (open histogram), and two anomalous
coupling models (dashed and dotted histograms). The last bin
includes overflows.

A three-dimensional grid of values of anomalous cou-
plings Ak<z, Agif, and Az is produced. For each point
of the grid we generate W Z production using MCFM [19]



Source eee eeps = jnon
YA 0.39 £0.07 1.48 £0.20 0.40+0.07 1.26 £ 0.23
V+jets 0.63+0.17 0.56 +£0.24 0.03+0.01 0.17 4+ 0.05
Zy 0.28+0.08 < 0.001 0.66+0.34 <0.001
tt 0.03 £0.01 0.05£0.01 0.04 +0.01 0.03+0.01
Total bkg. 1.33+£0.21 2.11+0.31 1.13£0.35 1.46 £ 0.24
WZ signal 59+08 694+08 4.7+£06 58+08
Observed 9 11 9 5

TABLE II: Number of observed events, expected number of signal events, and expected number of background events for each
final state signature with total (statistical and systematic) uncertainties.

and obtain normalized to luminosity pr spectrum of the

N T T
Z boson. This spectrum combined with that from the é 1? lfb'lé
estimated background is compared with the measured Z r ]
boson pr spectrum in data. The likelihood of the match 03F B
is calculated with the assumption of Poisson statistics oi A
for the signal and Gaussian uncertainties for the back- r ]
ground. The two-dimensional 95% C.L. limit contours sk B
in three planes, (Arz, Az), (Ag?, A7), and (Ag?, Axz), ]
are shown in Fig. 4. In each case the third coupling is re- s ]

stricted to the SM value. For the HISZ parameterization _0_72“ S5 0l 005 0 o5 01 o ‘(;_2
the results are presented as limits on two coupling param- A,

eters: Axy and Az. The corresponding two-dimensional

95% C.L. limit contour is shown on Fig. 5. The one- R AR N
dimensional limits on the coupling parameters obtained < 020 1fb E
without any coupling relation and with HISZ parameter- F ]
ization are summarized in Table III. 0'1? E
or =
Coupling relation 95% C.L. Limit F ]
Ag? = Ary =0 —0.075 < Ay < 0.093 oIE E
Az =Arz =0 —0.053 < Ag? <0.156 0.2 =
Az =AgZ =0 —0.376 < Arz < 0.686 o L e

Aryz =0 (HISZ) —0.075 < Az < 0.093 U320l A5 0.2
Az =0 (HISZ)  —0.027 < Aky < 0.080 Ay
i 0-3?—v—f ﬁ—v—lﬁ:
TABLE III: One-dimensional 95% C.L. limits on anomalous 0'2:7 o E
coupling parameters obtained from varying one of the cou- 0.1E A
plings while fixing the remaining couplings to the SM values F ]
(top three results). The last two results correspond to one- 0 -
dimensional 95% C.L. limits on anomalous coupling param- F 1
eters for the HISZ parameterization. A form factor scale of 0.1 B
A =2 TeV is used. r 3
0.2F -

In summary, we have presented a measurement of I T S S SR

the WZ production cross section using 4.1 fb~! of in- Ax,

tegrated luminosity of DO data. We observe 34 events
with 23.3 £ 1.5 expected signal events and 6.0 & 0.6 es-
timated background events. We measure the W Z cross
section to be 3.9075 55 pb, which is in agreement with
the SM NLO prediction of 3.25 £0.19 pb [19]. This is

FIG. 4: (Color online) Two-dimensional 95% C.L limit con-
tours on (Arz, Az) (a), (Agé,Az) (b), and (Agf, Akz) (c).
The point corresponds to the minimum of the likelihood sur-
face. The vertical and horizontal lines represent the one-

the most precise measurement to date of the W Z cross
section. We find no evidence for anomalous WW Z cou-
plings and set 95% C.L. limits of —0.075 < Az < 0.093

dimensional limits calculated separately. A form factor scale
of 2 TeV is used.
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FIG. 5: (Color online) Two-dimensional 95% C.L limit con-
tours for the HISZ parameterization. The point corresponds
to the minimum of the likelihood surface. The vertical
and horizontal lines represent the separately calculated one-
dimensional limits.

and —0.027 < Akz < 0.080 for the HISZ parametrization
using A = 2 TeV. These are the most stringent limits on
WW Z couplings obtained from the study of direct WZ
production.
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