105 research outputs found

    Effects of balloon injury on neointimal hyperplasia in steptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.

    Get PDF
    BACKGROUND: The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown. METHODS AND RESULTS: Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adjunct insulin therapy. To study the effect of balloon injury in nondiabetic rats with hyperinsulinemia, pancreatic islets were transplanted under the kidney capsule in normal rats. Glucose did not increase VSMC proliferation and migration in vitro. In contrast, insulin induced a significant increase in VSMC proliferation and migration in cell cultures. Furthermore, in VSMC culture, insulin increased MAPK activation. A reduction in neointimal hyperplasia was consistently documented after vascular injury in hyperglycemic streptozotocin-induced diabetic rats. Insulin therapy significantly increased neointimal hyperplasia in these rats. This effect of hyperinsulinemia was totally abolished by transfection on the arterial wall of the N17H-ras-negative mutant gene. Finally, after experimental balloon angioplasty in hyperinsulinemic nondiabetic islet-transplanted rats, a significant increase in neointimal hyperplasia was observed. CONCLUSIONS: In rats with streptozotocin-induced diabetes, balloon injury was not associated with an increase in neointimal formation. Exogenous insulin administration in diabetic rats and islet transplantation in nondiabetic rats increased both blood insulin levels and neointimal hyperplasia after balloon injury. Hyperinsulinemia through activation of the ras/MAPK pathway, rather than hyperglycemia per se, seems to be of crucial importance in determining the exaggerated neointimal hyperplasia after balloon angioplasty in diabetic animals

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s √ =8  TeV with the ATLAS detector

    Get PDF
    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3  fb−1 from pp collisions at a center-of-mass energy s√=8  TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the tt¯ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AℓℓC based on the selected leptons and Att¯C based on the reconstructed tt¯ final state. The inclusive asymmetries are measured in the full phase space to be AℓℓC=0.008±0.006 and Att¯C=0.021±0.016, which are in agreement with the Standard Model predictions of AℓℓC=0.0064±0.0003 and Att¯C=0.0111±0.0004

    Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector

    Get PDF
    The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy at the Large Hadron Collider, corresponding to an integrated luminosity of . The focus is on the contributions to processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.Fil: Aaboud, M.. Université Mohamed Premier and LPTPM; MarruecosFil: Aad, G.. Aix-Marseille Université ; FranciaFil: Abbott, B.. Oklahoma State University; Estados UnidosFil: Abdallah, J.. Academia Sinica; ChinaFil: Abdinov, O.. Azerbaijan Academy of Sciences; AzerbaiyánFil: Alconada Verzini, María Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Alonso, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Arduh, Francisco Anuar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Hoya, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Monticelli, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Bossio Sola, Jonathan David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Otero y Garzon, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Piegaia, Ricardo Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Sacerdoti, Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Zibell. A.. Julius-Maximilians-Universität ; AlemaniaFil: Zieminska, D.. Indiana University; Estados UnidosFil: Zimine, N. I.. Joint Institute for Nuclear Research; RusiaFil: Zimmermann, C.. Universität Mainz ; AlemaniaFil: Zimmermann, S.. Albert-Ludwigs-Universität ; AlemaniaFil: Zinonos, Z.. Georg-August-Universität ; AlemaniaFil: Zinser, M.. Universität Mainz ; AlemaniaFil: Ziolkowski, M.. Universität Siegen ; AlemaniaFil: Živković, L.. University of Belgrade ; SerbiaFil: Zobernig, G.. University of Wisconsin; Estados UnidosFil: Zoccoli, A.. Università di Bologna ; ItaliaFil: Nedden, M. zur. Humboldt University; AlemaniaFil: Zurzolo, G.. Università di Napoli; ItaliaFil: Zwalinski, L.. Cern - European Organization For Nuclear Research; SuizaFil: The ATLAS Collaboration. No especifica

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    A search for an excited muon decaying to a muon and two jets in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A new search signature for excited leptons is explored. Excited muons are sought in the channel ppμμμμ jet jetpp \to \mu\mu^* \to \mu \mu\textrm{ jet jet}, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb1^{-1} of pppp collision data at a centre-of-mass energy of s\sqrt{s} = 8 TeV taken with the ATLAS detector at the Large Hadron Collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass mμm_{\mu^*}. For mμm_{\mu^*} between 1.3 TeV and 3.0 TeV, the upper limit on σB(μμqqˉ\sigma B(\mu^* \to \mu q \bar{q}) is between 0.6 and 1 fb. Limits on σB\sigma B are converted to lower bounds on the compositeness scale Λ\Lambda. In the limiting case Λ=mμ\Lambda = m_{\mu^*}, excited muons with a mass below 2.9 TeV are excluded. With the same model assumptions, these limits at larger μ\mu^* masses improve upon previous limits from traditional searches based on the gauge-mediated decay μμγ\mu^* \to \mu \gamma.Comment: 33 pages in total, author list starting page 16, 4 figures, 5 tables, final version published by New Journal of Physics including corrections in Erratum https://dx.doi.org/10.1088/1367-2630/ab46ed. All figures including auxiliary are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-0

    Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at √s=8  TeV with the ATLAS detector

    Get PDF
    A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to 20.220.2 fb1^{-1} of s=8\sqrt{s}=8 TeV pppp collisions, and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of WWWW or WZWZ boson pairs accompanied by a high-mass dijet system, with one WW decaying leptonically, and a WW or ZZ decaying hadronically. The hadronically decaying W/ZW/Z is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters α4\alpha_4 and α5\alpha_5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are 0.024<α4<0.030-0.024<\alpha_4<0.030 and 0.028<α5<0.033-0.028<\alpha_5<0.033.Comment: 38 pages in total, author list starting page 22, 5 figures, 2 tables, published in Phys. Rev. D. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-09
    corecore