787 research outputs found

    Of, By, and For Which People? Government and Contested Heritage in the American Midwest

    Get PDF
    Two government-owned and managed heritage sites in Indiana, USA, offer an opportunity to explore the role of governments in adjudicating the competing paradigms of value and contested uses. Strawtown Koteewi is a Hamilton County park and Mounds State Park is part of the Indiana Department of Natural Resources statewide park system. Each site has come under scrutiny in recent years. Strawtown Koteewi is one of the most significant sites in the area for understanding the history of Native peoples. After almost a decade of archaeological excavations, several Native American groups, under the auspices of the Native American Graves Protection and Repatriation Act (NAGPRA), initiated repatriation processes for the recovery of human remains, and some objected to the ongoing archaeological research. At Mounds State Park a coalition of citizens opposed a planned dam project intended to ensure a safe and plentiful water supply and to spur economic development in the area. In each case, the government entities have had to navigate the political landscapes of competing claims about the sites. These case studies expose the fissures between authorized heritage discourse and the paradigms of meaning among the diverse constituencies of the sites, and they highlight the tenuous position of public governance in privileging competing cultural, economic, and social interests. While not unique, the state and county agencies’ positions within these fields of power and their strategic choices reveal some of the barriers and constraints that limit their actions as well as the deep-seated ideologies of policies that perpetuate settler colonial politics in the control and interpretation of indigenous heritage

    Severe Acute Respiratory Infection-Preparedness: Protocol for a Multicenter Prospective Cohort Study of Viral Respiratory Infections

    Get PDF
    OBJECTIVES: Respiratory virus infections cause significant morbidity and mortality ranging from mild uncomplicated acute respiratory illness to severe complications, such as acute respiratory distress syndrome, multiple organ failure, and death during epidemics and pandemics. We present a protocol to systematically study patients with severe acute respiratory infection (SARI), including severe acute respiratory syndrome coronavirus 2, due to respiratory viral pathogens to evaluate the natural history, prognostic biomarkers, and characteristics, including hospital stress, associated with clinical outcomes and severity. DESIGN: Prospective cohort study. SETTING: Multicenter cohort of patients admitted to an acute care ward or ICU from at least 15 hospitals representing diverse geographic regions across the United States. PATIENTS: Patients with SARI caused by infection with respiratory viruses that can cause outbreaks, epidemics, and pandemics. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Measurements include patient demographics, signs, symptoms, and medications; microbiology, imaging, and associated tests; mechanical ventilation, hospital procedures, and other interventions; and clinical outcomes and hospital stress, with specimens collected on days 0, 3, and 7-14 after enrollment and at discharge. The primary outcome measure is the number of consecutive days alive and free of mechanical ventilation (VFD) in the first 30 days after hospital admission. Important secondary outcomes include organ failure-free days before acute kidney injury, shock, hepatic failure, disseminated intravascular coagulation, 28-day mortality, adaptive immunity, as well as immunologic and microbiologic outcomes. CONCLUSIONS: SARI-Preparedness is a multicenter study under the collaboration of the Society of Critical Care Medicine Discovery, Resilience Intelligence Network, and National Emerging Special Pathogen Training and Education Center, which seeks to improve understanding of prognostic factors associated with worse outcomes and increased resource utilization. This can lead to interventions to mitigate the clinical impact of respiratory virus infections associated with SARI

    Angiopoietin-Like4 Is a Novel Marker of COVID-19 Severity

    Get PDF
    IMPORTANCE: Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients

    The sponge microbiome within the greater coral reef microbial metacommunity

    Get PDF
    Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.publishe

    Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems

    Get PDF
    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems

    Host diet mediates a negative relationship between abundance and diversity of <i>Drosophila</i> gut microbiota.

    Get PDF
    Nutrient supply to ecosystems has major effects on ecological diversity, but it is unclear to what degree the shape of this relationship is general versus dependent on the specific environment or community. Although the diet composition in terms of the source or proportions of different nutrient types is known to affect gut microbiota composition, the relationship between the quantity of nutrients supplied and the abundance and diversity of the intestinal microbial community remains to be elucidated. Here, we address this relationship using replicate populations of &lt;i&gt;Drosophila melanogaster&lt;/i&gt; maintained over multiple generations on three diets differing in the concentration of yeast (the only source of most nutrients). While a 6.5-fold increase in yeast concentration led to a 100-fold increase in the total abundance of gut microbes, it caused a major decrease in their alpha diversity (by 45-60% depending on the diversity measure). This was accompanied by only minor shifts in the taxonomic affiliation of the most common operational taxonomic units (OTUs). Thus, nutrient concentration in host diet mediates a strong negative relationship between the nutrient abundance and microbial diversity in the &lt;i&gt;Drosophila&lt;/i&gt; gut ecosystem

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Politics, 1641-1660

    Get PDF
    corecore