21,903 research outputs found

    Investigative psychology

    Get PDF
    The domain of Investigative Psychology covers all aspects of psychology that are relevant to the conduct of criminal or civil investigations. Its focus is on the ways in which criminal activities may be examined and understood in order for the detection of crime to be effective and legal proceedings to be appropriate. As such Investigative Psychology is concerned with psychological input to the full range of issues that relate to the management, investigation and prosecution of crim

    Dispersive properties of high order nedelec/edge element approximation of the time-harmonic Maxwell equations

    Get PDF
    The dispersive behaviour of high-order Næ#169;dæ#169;lec element approximation of the time harmonic Maxwell equations at a prescribed temporal frequency ω on tensor-product meshes of size h is analysed. A simple argument is presented, showing that the discrete dispersion relation may be expressed in terms of that for the approximation of the scalar Helmholtz equation in one dimension. An explicit form for the one-dimensional dispersion relation is given, valid for arbitrary order of approximation. Explicit expressions for the leading term in the error in the regimes where ωh is small, showing that the dispersion relation is accurate to order 2p for a pth-order method; and in the high-wavenumber limit where 1«ωh, showing that in this case the error reduces at a super-exponential rate once the order of approximation exceeds a certain threshold, which is given explicitly

    Early impacts of the European social fund 2007-13

    Get PDF

    A Multimedia Interactive Environment Using Program Archetypes: Divide-and-Conquer

    Get PDF
    As networks and distributed systems that can exploit parallel computing become more widespread, the need for ways to teach parallel programming effectively grows as well. Even though many colleges and universities provide courses on parallel programming [1], most of those courses are reserved for graduate students and advanced undergraduates. There is a demand for ways to teach fundamental parallel programming concepts to people with just a working knowledge of programming. By using the idea of a software archetype, and providing a learning environment that teaches both concept and coding, we hope to satisfy this need. This paper presents an overview of the multimedia approach we took in teaching parallel programming and offers Divide-and-Conquer as an example of its use

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results
    corecore