2,190 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Towards an Information Theoretic Framework for Evolutionary Learning

    Get PDF
    The vital essence of evolutionary learning consists of information flows between the environment and the entities differentially surviving and reproducing therein. Gain or loss of information in individuals and populations due to evolutionary steps should be considered in evolutionary algorithm theory and practice. Information theory has rarely been applied to evolutionary computation - a lacuna that this dissertation addresses, with an emphasis on objectively and explicitly evaluating the ensemble models implicit in evolutionary learning. Information theoretic functionals can provide objective, justifiable, general, computable, commensurate measures of fitness and diversity. We identify information transmission channels implicit in evolutionary learning. We define information distance metrics and indices for ensembles. We extend Price\u27s Theorem to non-random mating, give it an effective fitness interpretation and decompose it to show the key factors influencing heritability and evolvability. We argue that heritability and evolvability of our information theoretic indicators are high. We illustrate use of our indices for reproductive and survival selection. We develop algorithms to estimate information theoretic quantities on mixed continuous and discrete data via the empirical copula and information dimension. We extend statistical resampling. We present experimental and real world application results: chaotic time series prediction; parity; complex continuous functions; industrial process control; and small sample social science data. We formalize conjectures regarding evolutionary learning and information geometry

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca

    Individual and ensemble functional link neural networks for data classification

    Full text link
    This study investigated the Functional Link Neural Network (FLNN) for solving data classification problems. FLNN based models were developed using evolutionary methods as well as ensemble methods. The outcomes of the experiments covering benchmark classification problems, positively demonstrated the efficacy of the proposed models for undertaking data classification problems

    An empirical study towards efficient learning in artificial neural networks by neuronal diversity

    Get PDF
    Artificial Neural Networks (ANN) are biologically inspired algorithms, and it is natural that it continues to inspire research in artificial neural networks. From the recent breakthrough of deep learning to the wake-sleep training routine, all have a common source of drawing inspiration: biology. The transfer functions of artificial neural networks play the important role of forming decision boundaries necessary for learning. However, there has been relatively little research on transfer function optimization compared to other aspects of neural network optimization. In this work, neuronal diversity - a property found in biological neural networks- is explored as a potentially promising method of transfer function optimization. This work shows how neural diversity can improve generalization in the context of literature from the bias-variance decomposition and meta-learning. It then demonstrates that neural diversity - represented in the form of transfer function diversity- can exhibit diverse and accurate computational strategies that can be used as ensembles with competitive results without supplementing it with other diversity maintenance schemes that tend to be computationally expensive. This work also presents neural network meta-features described as problem signatures sampled from models with diverse transfer functions for problem characterization. This was shown to meet the criteria of basic properties desired for any meta-feature, i.e. consistency for a problem and discriminatory for different problems. Furthermore, these meta-features were also used to study the underlying computational strategies adopted by the neural network models, which lead to the discovery of the strong discriminatory property of the evolved transfer function. The culmination of this study is the co-evolution of neurally diverse neurons with their weights and topology for efficient learning. It is shown to achieve significant generalization ability as demonstrated by its average MSE of 0.30 on 22 different benchmarks with minimal resources (i.e. two hidden units). Interestingly, these are the properties associated with neural diversity. Thus, showing the properties of efficiency and increased computational capacity could be replicated with transfer function diversity in artificial neural networks
    corecore