216 research outputs found

    Fitness sharing and niching methods revisited

    Get PDF
    Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques

    Niching genetic algorithms for optimization in electromagnetics. I. Fundamentals

    Get PDF
    Niching methods extend genetic algorithms and permit the investigation of multiple optimal solutions in the search space. In this paper, we review and discuss various strategies of niching for optimization in electromagnetics. Traditional mathematical problems and an electromagnetic benchmark are solved using niching genetic algorithms to show their interest in real world optimization

    Optimization of a small passive wind turbine generator with multiobjective genetic algorithms

    Get PDF
    In this paper Multiobjective Genetic Algorithms (MOGAs) are used for the design of a small wind turbine generator (WTG) coupled to a DC bus through a diode bridge. The originality of the considered system resides in the suppression of the Maximum Power Point Tracker (MPPT). The poor efficiency of the corresponding passive structure is considerably improved by optimizing the generator characteristics associated with the wind turbine in relation to the wind cycle. The optimized configurations are capable of matching very closely the behavior of active wind turbine systems which operate at optimal wind powers by using a MPPT control device

    Efficient genetic algorithms for solving hard constrained optimization problems

    Get PDF
    This paper studies many Genetic Algorithm strategies to solve hard-constrained optimization problems. It investigates the role of various genetic operators to avoid premature convergence. In particular, an analysis of niching methods is carried out on a simple function to show advantages and drawbacks of each of them. Comparisons are also performed on an original benchmark based on an electrode shape optimization technique coupled with a charge simulation metho

    Systemic design of multidisciplinary electrical energy devices: a pedagogical approach

    Get PDF
    In this paper, we present a complete educative project for illustrating the design and the analysis of hybrid electrical systems. It is based on the study of an ElectroHydrostatic Actuator for flight control application, fed by a power supply associating a PEM fuel cell with a ultracapacitor storage. This system is controlled to achieve a typical energy management strategy of this multi source structure. Step by step, student can faces typical issues relative to the design of heterogenous and multidisciplinary devices by achieving eight pedagogical objectives. These eight targets are focused on methodological approach for multi domain modelling (Bond Graphs), causal analysis, but also on simulation of complex heterogeneous systems. A typical hybrid system feeding an ElectroHydrostatic Actuator (EHA) for flight control application has to be designed which drives students towards other pedagogical objectives: system based device sizing (fuel cell and ultracapacitor), energy management, system analysis

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space

    Model inversion of electrical engineering systems from bicausal bond graphs

    Get PDF
    In this paper, the application of bicausal bond graphs for model inversion of typical electrical engineering systems is emphasised. Inverse models are particularly useful for the synthesis step of the system design process. To illustrate these issues, a typical railway traction device and an Aeronautic Electro Hydrostatic Actuator are considered as case studies. From the requirements applied to the system outputs, we show how the synthesis of electrical constraints can be carried out from the inverse bicausal Bond Graph

    Clustering analysis of railway driving missions with niching

    Get PDF
    A wide number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching genetic algorithm is presented, with the aim of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to three clustering benchmarks and to the classification of driving missions for railway applications

    Recombination and Self-Adaptation in Multi-objective Genetic Algorithms

    Get PDF
    This paper investigates the influence of recombination and self-adaptation in real-encoded Multi-Objective Genetic Algorithms (MOGAs). NSGA-II and SPEA2 are used as example to characterize the efficiency of MOGAs in relation to various recombination operators. The blend crossover, the simulated binary crossover and the breeder genetic crossover are compared for both MOGAs on multi-objective problems of the literature. Finally, a self-adaptive recombination scheme is proposed to improve the robustness of MOGAs

    Signal synthesis by means of evolutionary algorithms

    Get PDF
    In this article, we investigate a procedure for generating signals with genetic algorithms. Signals are obtained from elementary patterns characterized by different degrees of freedom. These patterns are repeated and combined in order to reach specific signal shapes. The whole signal parametrization has to be determined by solving a difficult inverse problem of high dimensionality and strong multimodality. This can be carried out using evolutionary algorithms with the aim of finding all pattern configurations in the signal. The different signal synthesis schemes are evaluated, tested and applied to the generation of particular railway driving profiles
    • 

    corecore