110 research outputs found

    A Decentralized Control Framework for Energy-Optimal Goal Assignment and Trajectory Generation

    Full text link
    This paper proposes a decentralized approach for solving the problem of moving a swarm of agents into a desired formation. We propose a decentralized assignment algorithm which prescribes goals to each agent using only local information. The assignment results are then used to generate energy-optimal trajectories for each agent which have guaranteed collision avoidance through safety constraints. We present the conditions for optimality and discuss the robustness of the solution. The efficacy of the proposed approach is validated through a numerical case study to characterize the framework's performance on a set of dynamic goals.Comment: 6 pages, 3 figures, to appear at the 2019 Conference on Decision and Control, Nice, F

    An Optimal Coordination Framework for Connected and Automated Vehicles in two Interconnected Intersections

    Full text link
    In this paper, we provide a decentralized optimal control framework for coordinating connected and automated vehicles (CAVs) in two interconnected intersections. We formulate a control problem and provide a solution that can be implemented in real time. The solution yields the optimal acceleration/deceleration of each CAV under the safety constraint at "conflict zones," where there is a chance of potential collision. Our objective is to minimize travel time for each CAV. If no such solution exists, then each CAV solves an energy-optimal control problem. We evaluate the effectiveness of the efficiency of the proposed framework through simulation.Comment: 8 pages, 5 figures, IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS 201

    Beyond Reynolds: A Constraint-Driven Approach to Cluster Flocking

    Full text link
    In this paper, we present an original set of flocking rules using an ecologically-inspired paradigm for control of multi-robot systems. We translate these rules into a constraint-driven optimal control problem where the agents minimize energy consumption subject to safety and task constraints. We prove several properties about the feasible space of the optimal control problem and show that velocity consensus is an optimal solution. We also motivate the inclusion of slack variables in constraint-driven problems when the global state is only partially observable by each agent. Finally, we analyze the case where the communication topology is fixed and connected, and prove that our proposed flocking rules achieve velocity consensus.Comment: 6 page

    Conditions for State and Control Constraint Activation in Coordination of Connected and Automated Vehicles

    Full text link
    Connected and automated vehicles (CAVs) provide the most intriguing opportunity to reduce pollution, energy consumption, and travel delays. In earlier work, we addressed the optimal coordination of CAVs using Hamiltonian analysis. In this paper, we investigate the nature of the unconstrained problem and provide conditions under which the state and control constraints become active. We derive a closed-form analytical solution of the constrained optimization problem and evaluate the solution using numerical simulation
    • …
    corecore